

BioDinam	ca Installation	
	BioDinamica library	
	Wizard BioDinamica	8
	Use the library of BioDinamica	
Input data		1(
	Incident entries	11
	Mask	15
	Hexagon size	16
	Pixel size	17
	Minimum number of samples	18
	Predictive variables	19
	Phylogenetic tree	20
	Lengths of branches in phylogenies	22
	Sample data	22
Functions	Guide	23
Interpolac	lores	25
	GLM – Generalized Linear Model Interpolation	26
	LM – Linear Model Interpolation	2
	SAR – Spatial Autoregressive Model Interpolation	28
	NNI – Nearest Neighbour Interpolation	29
	Simple Interpolation	3(
		3
		34
		3:
	CWP Coographicaly Weight Pograssian	24
Ordinatio	a and statistical analysis	35 2
Ordination	I dilu Statistical dilatysis	30
	PCA – Principal componente analysis	3 /
	Principal componente analysis – PCA for Project	ວ≀
	CDDLS Canonical networed partial loast squares	35 ۸۱
	DISP. Dartial loast squares regression	40
	Correlation between ractors	- + مر
	Currentiation	44 //
	Cluster of Variables	- ب
	Global Moran I	44 ۱۸
	Spatial variogram	- - ۱۸
Classifiers	Spann whogham	
Classifiers	K-means classification	 ۵۶
	CLARA (Clustering for large applications) classification	 ۵۷
	Random forest classification	
	Unsupervised classification	51
	Minimum Convex Hull	53
Analysis o	f Biodiversity	54
	Species richness interpolated	 5 '
	Species richness model	
	Resample of species richness interpolated	59
	Resample of species richness model	
	Weight endemism index	6
	Weight endemism model	6
	GIE – Geographic interpolation of endemism	6
	SCI – Species composition interpolation	69
	GDM – Generalized dissimilarity model	7:
	Sampling effort	7
	SDM – Species distribution model	74
	Niche Overlap	78
	Spatialize phylogeny	79
	PD – Phylogenetic diversity	82
	PDM – Phylogenetic diversity model	83
	PE – Phylogenetic Endemism	85
	PEM – Phylogenetic Endemism model	87
	PCI – Phylogenetic composition interpolation	89
	Phylo-GDM – Phylogenetic generalized dissimilarity model	92
	Least cost paths hplotypes	93
Utilities		94
	Extract values to points	
	Area of distributions	96
	Sum of maps	
	Normalize values between 0 and 1	

BIODINAMICA INSTALATION

BIODINAMICA INSTALATION

● Nova guia > Dimamica EGO - Releases : X ← → C © csr.ufmg.br/dinamica/releases/ Ⅲ Ares: Y N © ● M © ● M ● Sol +Hub - copset	z Ann 📑 Library Genesis 🔤 Downloads Faunalin 🎦 Fotógrafos ex Home	Ubingara _ 0 × Q ☆ 0 ←
	Releases	
		0
Microsoft Windows	GNU / Linux	MacOS
(10, 8.1, 8, 7, Vista, Server 2012 R2, Server 2012 and Server 2008 R2)	(Ubuntu 17.10, <u>Others</u>)	(Coming Soon)
64 / 32 BITS (AUTOMATIC)	Setup - Dinamica EGO 4	- • ×
Enhancement Plugins Debug Information	The existent Dinamica EGO 4 appl be removed before proceeding.	lication and its corresponding examples must
	An installation of Dinamica EGO 4	(version 4.0.8) was found in your system.
*For Older Releases refer to this page.	Click "Next" to remove the installe (Clicking "Cancel" will abort the in	a version.
2		
Click on download		
the Dinamica-EGO		Next > Cancel

BIODINAMICA INSTALATION

http://csr.ufmg.br/dinamica/nui_download/926/

BIODINAMICA INSTALATION

http://csr.ufmg.br/dinamica/dokuwiki/doku.php?id=biodinamica

biodinamica [Dinamica E ×		- @ ×
C ① Não seguro csr.ufmg.br/dinamica/dokuwiki/doku.php?id=biodinamica		🖈 💽 💩 🐑 E
📲 📴 🐷 🔊 M 🕲 🤝 🦿 M 🕲 🖉 K 🖉 M 🐱 sci-Hub - cepekk don 📔 Library Genesis 💆 Downloads Fraunalli 📋 Fotogratos experient		Le Auto Focus M: » Outros favoritos
Dinamica EGO 🗰 Home	Search	Q 🖉 🚽 📲 Log In
race: biodinamica		
		biodinamica
		I ∧ Table of Contents
BioDinamica		BioDinamica
biobinamica		Group
Description		Internal Name
BioDinamica encompasses a set of functions for spatial analyses of biodiversity, biogeography and macroecology. Functions provided include are phylodiversity, beta-diversity endemicity, species distribution models (SDMs), beta-diversity predictive models (GDM), interpolators, spatial analy conservation analysis.	eas of endemism, species richness, ysis of ordination (PCA, PCR, NMDS)), spatial statistical analysis and tools for
Glick here to download the beta version		
Group		
BioDinamica		
Internal Name		
BioDinamica		

4 Click on BioDinamica download button

http://csr.ufmg.br/~ubirajara/ftp/BioDinamica-10.exe

🔊 Setup - Bio Dinamica Plugin — 🗌 🗙
Detection of Dinamica EGO 4 with Enhancement Plugin Dinamica EGO 4 with the Enhancement Plugin was successfully detected in your system.
Your Dinamica EGO 4 installation will receive the Bio Dinamica Plugin.
Installed Version
Version: Dinamica EGO 4.0.8, 64 bits Installation Folder: C:\Program Files\Dinamica EGO 4
Next > Cancel

LIBRARY OF BIODINAMICA

In Dinamica-EGO library are installed BioDinamica functions

WIZARD BIODINAMICA

You can use the capabilities of the wizard mode BioDinamica. This mode serves as a tutorial that guides the user through the analysis.

folder of shortcuts to BioDinamica tutorials (Wizard). Just choose the function and give a double-click to use it. Follow the Wizard and run the function.

BIODINAMICA LIBRARY

Another option for accessing BioDinamica functions is the Dinamica-EGO library.

INPUT DATA

The input data are standardized, there are four basic formats, each format used in certain analyses. All input files of events (species, values or coordinates) should be as a csv table.

sp, x, y

Amaurospiza_carrizalensis, -62.6, 8.09 Amazilia_brevirostris, -62.43, 8.17 Amazilia_viridigaster, -62.6, 8.09 Anthracothorax_nigricollis, -62.43, 8.17 Aratinga_pertinax, -62.39, 8.01 Aratinga_pertinax, -62.6, 8.09 Aratinga_pertinax, -62.4, 8.01 Aratinga_pertinax, -62.4, 8.01 Arremonops_conirostris, -62.4, 8.02 Arremonops_conirostris, -62.6, 8.09 Arremonops_conirostris, -62.03, 8.23 Attila_cinnamomeus, -62.03, 8.23

dependent,x,y 0.374873087,-62.5,8.5 0.223601681,-61.5,8.5 0.920603089,-65.5,7.5 0.590162478, -64.5, 7.5 0.654559192,-63.5,7.5 1.141030639, -62.5, 7.5 0.066875409,-61.5,7.5 -0.207549216, -60.5, 7.5 0.567730694,-59.5,7.5 0.531714651,-58.5,7.5 0.868004655,-66.5,6.5 1.083130427,-65.5,6.5 -0.031537805,-64.5,6.5 1.310974319,-63.5,6.5 0.328827238,-62.5,6.5 0.179027994,-61.5,6.5

х, у	
-62.6,	8.09
-62.43	8,8.17
-62.6,	8.09
-62.43	8,8.17
-62.39	,8.01
-62.6,	8.09
-62.4,	8.01
-62.4,	8.01
-62.4,	8.02
-62.6,	8.09
-62.03	,8.23
-62.03	,8.23
-62,8	

Hap	olotype, x, y	
1,	-63.41360000000,	2.35992000000
З,	-59.91500000000,	4.90430000000
2,	-66.98300000000,	4.69232000000
1,	-63.41360000000,	0.87548800000
2,	-65.35730000000,	5.78790000000
4,	-64.65050000000,	4.05627000000
З,	-61.82330000000,	5.64648000000
З,	-60.93980000000,	4.72772000000

INPUT OF OCCURRENCES

1

The inputs of occurrences should be in csv format. This format consists of a text file with the columns separated by commas. You can save this format in spreadsheet software (Excel, for example). However, be aware that 0.0 software some may use (semicolon) as the separator for columns, this will cause a parse error. 0.0 In this case, replace the "." (semicolon) by (comma) in Notepad.

2

The first column must contain the name of the species. The title of the column should be "sp". The genere should be separated from the specific epithet for "_", do not use space.

3

The second and third columns should contain geographical coordinates of points of occurrence of the species. The coordinates must be in decimal degrees, with the decimals separated by a point.

sp, x, y

```
Amaurospiza_carrizalensis, -62.6, 8.09
Amazilia_brevirostris, -62.43, 8.17
Amazilia_viridigaster, -62.6, 8.09
Anthracothorax_nigricollis, -62.43, 8.17
Aratinga_pertinax, -62.39, 8.01
Aratinga_pertinax, -62.6, 8.09
Aratinga_pertinax, -62.4, 8.01
Aratinga_pertinax, -62.4, 8.01
Arremonops_conirostris, -62.4, 8.02
Arremonops_conirostris, -62.6, 8.09
Arremonops_conirostris, -62.03, 8.23
Attila cinnamomeus, -62.03, 8.23
```

INPUT OF OCCURRENCES

2

The second and third columns should contain geographical coordinates of points. The coordinates must be in decimal degrees, with the decimals separated by a point. 1

The first column must contain the dependent variable. The title of the column should be "dependent" and values must be numeric.

dependent,x,y 0.374873087,-62.5,8.5 0.223601681,-61.5,8.5 0.920603089,-65.5,7.5 0.590162478,-64.5,7.5 0.654559192,-63.5,7.5 1.141030639, -62.5, 7.5 0.066875409,-61.5,7.5 -0.207549216, -60.5, 7.5 0.567730694,-59.5,7.5 0.531714651, -58.5, 7.5 0.868004655,-66.5,6.5 1.083130427,-65.5,6.5 -0.031537805,-64.5,6.5 1.310974319,-63.5,6.5 0.328827238,-62.5,6.5 0.179027994,-61.5,6.5

INPUT OF OCCURRENCES

Points: columns must contain the geographical coordinates of points. The coordinates must be in decimal degrees, with the decimals separated by a point.

х, у -62.6,8.09 -62.43,8.17 -62.6,8.09 -62.43,8.17 -62.39,8.01 -62.6,8.09 -62.4,8.01 -62.4,8.01 -62.4,8.02 -62.6,8.09 -62.03,8.23 -62.03,8.23 -62,8

Genetic data table columns (haplotypes): must contain the haplotypes in each population (identified by numbers) and the geographical coordinates of points samples. The of coordinates must be in decimal degrees, with the decimals separated by a point. The columns should be: Haplotype, х, у.

Haplotype, x, y				
1,	-63.41360000000,	2.35992000000		
З,	-59.91500000000,	4.90430000000		
2,	-66.98300000000,	4.69232000000		
1,	-63.41360000000,	0.87548800000		
2,	-65.35730000000,	5.78790000000		
4,	-64.65050000000,	4.05627000000		
З,	-61.82330000000,	5.64648000000		
3,	-60.93980000000,	4.72772000000		

HEXAGON SIZE

PIXEL SIZE

MINIMUM NUMBER OF SAMPLES

In several BioDinamica functions you can choose the minimum number of samples to be used in the analysis (within sampling units, hexagons). With that, hexagons with less samples that the stipulated minimum value will be discarded. This choice is required to reduce negative effects of very small samples due to sampling differences.

PREDICTIVE VARIABLES

As the Predictor variable BioDinamica uses map files in raster format (GeoTiff). These files must be cut to the same length (mask) and with the same pixel size.

PHYLOGENETIC TREE

The phylogenetic tree file must be in the format tre (newick format tree files). The input tree does not need to have a complete match between the terminals and the occurrence data. That is, the tree may have more species than the present occurrence points, or vice versa. However, the names of species must have the same spelling in the tree and occurrence points.

(((((((Apteryx_australis:0.265821595,Apteryx_mantelli:0.265821595): :6.797034465):20.99100666,Crypturellus_strigulosus:27.78804113):16. 79235434,(Anser_cygnoids:0.7294041477,Anser_anser:0.7294401477).11. australis:1.302378968):1.6156344,((Aythya_fuligula:1.100860807,(Ayt 993497593,((Chloephaga_melanoptera:1.74053644),Neochen_jubata:1.7400 nigra:0.313972276):1.567691591):1.143444512):0.8287346259):0.17519 as_chlorotis:0.2961105225):0.117438128,Anas_nesiotis:0.4135486553) :5.629349646):5.450411418,Stictometta_naevosa:19.8880376):3.462218 4680:26.88733024,((((Oreophasis_derbianus:13.21078574,(((Nothocrax 72, (Penelopina_nigra:7.234880945,((Chamaepetes_unicolor:2.952991629 :1.775400834,Callipepla_californica:1.775400834):3.49489955,(Calli 975265):1.692201023,((Perdicula_asiatica:11.74746793,Ammoperdix_hey 0.1097507471,Syrmaticus_ellioti:0.1097507471):3.796522883):3.590101 45431,(((Lagopus_muta:4.260828896,Lagopus_lagopus:4.26082886):2.21 bscurus:1.974497068):8.9247796):4.290158492,((Tragopan_blythii:4.75 nus_levaillantoides:0.1895594946):2.373062648):0.3552282331:3.180

LENGTHS OF BRANCHES IN PHYLOGENIES

Can be used two types of phylogenetic trees-with length of branches or without branches length. If the tree does not have length of branches will be assumed between each event of cladogenesis branch length is equal to 1.

Pyrrhocoma_rufi la_luctuosa,Sporo Phrygilus_carbo, biglossa_glor a),Thlypopsis_ruficeps.pyrhoupis_cyanopter__sordida,Hemis fringilloides,Sporophila_luctuo_sidea_mela_Heterospingus_rubri hraupis_episcopus),Thraubis_cyanopteref,((Iridosornis_porphyrocepha thraustes_humeralis,Pipravidea_melmonota,Wetmorethraupis_sternhopt ia,Tangara_chilensis,Tangara_schrankii,Tangara_johannae,Tangara_par

alis:0.265 9100666,Cryptur ygnoides:0.729440 8968):1.6156344,(phaga_melanoptera

(((((((Apteryx_autralis)1.567691591):/.78804113):16.74374968): 79235434,(Anser_cygnoides:a_105225):0.1176.7294401477):1.649795287) australis:1.30278968):1.6156 australis:1.30278968):1.6156 93497593,((Chlophaga_melanoptarta_c_thinkechen_jubata:1.740536401):6. _nigra:9.313972270:1.5676915914.1143444512):0.8287346259):0.17519082691.14 as_chlorotis:0.296115225):0.1174381328,Anas_nesiotis:0.4135486533):1.5013457 :5.629349646):5.450411418,Stictonetta naevosa:19.88880376):3.462218282):0.561

EXEMPLE DATA

To perform the functions, with the purpose of training, sample files are available from leading BioDinamica entries in the folder:

\Documents\Dinamica EGO 4\Dataset\Bio Dinamica Models\BioDinamica_data

It is recommended that you move this folder BioDinamica_data preferably in the root of a drive of the computer because the long address may not allow the execution of analyses. The icons below, representing each file for example, appear in the Guide to indicate which file can be used as an example in each analysis.

FUNCTIONS GUIDE

FUNCTIONS GUIDE

To perform the functions of BioDinamica and examples, the functions guide will show how to proceed and the details about each parameter of the function. Below, see the General schema for the reading of the functions guide.

INTERPOLATION

GLM – GENERALIZED LINEAR MODEL INTERPOLATION

GIm Interpolation

This function interpolates spatially values by predictive variables, using a generalized linear model. As a result are generated reports informing the model and setting the parameters, and a map in raster format (GeoTiff) with the predicted values.

Table in csv format (comma separated columns). First column with continuous numeric values (DON'T USE CATEGORICAL VALUES OR CLASSES), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named: dependent, x, y, written with lowercase letters. Enter the folder that contains the rasters (in GeoTiff format) that will be used as predictors. The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands.	General tab (main)
Indicate the folder in which the files of results will be saved.	C:/Predictors
Choose the corresponding numbers, the distribution of errors that will be used in the GLM.	Advanced tab Functor Editor - Glm Interpolation X Constribution In Function Glm Choose error distribution: 1 - binomial; 2 - gaussian; 3 - Gamma; 4 - inverse gaussian; 5 - poisson; 6 - quasi; 7 - quasibinomial; 8 - quasipoisson;
Select the reference coordinate system. The default option is WGS84 system. If you want to change this option, use the standard format Rgdal to change coordinate system.	2 a Coordinate Reference System Define Coordinate Reference System with standard Rgdal formatting +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0

LM –LINEAR MODEL INTERPOLATION

Linear Model Interpolation

This function interpolates spatially values by means of predictive variables, using a linear model. As a result are generated reports informing the model and setting the parameters and map in raster format (GeoTiff) with the predicted values.

SAR – SPATIAL AUTOREGRESSIVE MODEL INTERPOLATION

This function interpolates spatially values by predictive variables, using a space-filling model autoregressive. As a result are generated reports informing the fit and the parameters of the model and map in raster format (GeoTiff) with the predicted values .

NNI - NEAREST NEIGHBOUR INTERPOLATION

NN Nni

This function interpolates spatially values, through the spatial pattern of the variables using the interpolator nearest neighbour. As a result is generated a map in raster format (GeoTiff) with the predicted values. General tab (main) General Seneral ? Input Points Table in csv format (comma separated columns). Being the first column with continuous numeric values (DON'T USE Input points (csv format) with dependent variable (with columns: dependent, x, y) CATEGORICAL VALUES or CLASSES), the second column with x coordinates (longitude) and third column with coordinates E:\BioDinamica data\Cont data.csv y (latitude). The columns must be named: dependent, x, y, Cont data written with lowercase letters. ? Input Mask Shapefile (shp) of area of study E:\BioDinamica_data\Mask\Mask.shp Specify a file in the shapefile (.SHP) format to serve as a mask (area in which will be held the interpolation) Mask ? Output Raster Filename of output raster E:\BioDinamica_data\nni.tif Predictors Enter the name and location of the raster file format (GeoTiff) that is saved with the test results. OK Cancel Advanced tab General || 🍼 Advanced R Number Of Neighbours Choose the maximum number of neighbors that will be used Maximum number of neighbours in the calculation of interpolation. 5 Choose the cell size of the resulting map (interpolated). The R Cell Size value must be in the same unit of the coordinate system Cell size of output used. 0.05 🗹 Smooth Map Choose if the interpolation will be smoothed by the average neighbor. Smooth interpolation map by neighbours No Smooth Map If you have chosen the smoothing by the average of the N Number Of Pixels In Snooth neighbors, choose the number of neighbors that will be used 30 in the calculation of the average. a Coordinate Reference System Ø - 7. Define Coordinate Reference System with standard Rgdal formatting Select the reference coordinate system. The default option is WGS84 system. If you want to change this option, use the +proj=longlat +datum=WGS84 +no_defs standard format Rgdal to change coordinate system. +ellps=WGS84 +towgs84=0,0,0 http://csr.ufmg.br/dinamica/dokuwiki/doku.php?id=nni OK Cancel

SPLINE INTERPOLATION

Spline Interpolation

This function interpolates spatially values, through the spatial pattern of the variables using the simple function (Spline). As a result is generated a map in raster format (GeoTiff) with the predicted values.

SIMPLE KRIGING INTERPOLATION

This function interpolates spatially values, through the spatial pattern of the variables using the kriging function. As a result is generated a map in raster format (GeoTiff) with the predicted values.

	General tab (main)	
	Functor Editor - Simple Kriging Interpolation	
Table in csv format (comma separated columns). Being the first column with continuous numeric values (DON'T USE CATEGORICAL VALUES or CLASSES), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named: dependent, x, y, written with lowercase letters.	? Input Points Input points (csv format) with dependent variable (with columns: dependent, x, y) C:/data/cont_data.csv	ड्रा nt_data
Specify a file in the shapefile (.SHP) format to serve as a mask (area in which will be held the interpolation)	P Input Mask Shapefile (shp) of area of study C:/limits/mask.shp	shp Vlask
Enter the name and location of the raster file format (GeoTiff) that is saved with the test results.	Output Raster Filename of output raster C:/temp/output/result.tif	
	OK Cancel Advanced tab Functor Editor - Simple Kriging Interpolation General Advanced R Model	
Choose the corresponding numbers, the variogram model used on kriging	gaussian	
Choose the number of "Lags" used in the construction of the variogram.	e Number of lags	
Choose the cell size of the resulting map (interpolated). The value must be in the same unit of the coordinate system used.	R Cell Size	
Select the reference coordinate system. The default option is WGS84 system. If you want to change this option, use the standard format Rgdal to change coordinate system.	a Coordinate Reference System Define Coordinate Reference System with standard Rgdal formatting +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0	
http://csr.ufmg.br/dinamica/dokuwiki/doku.php?id=s imple_kriging_interpolation	S OK Cancel	

ORDINARY KRIGING INTERPOLATION

This function interpolates spatially values, through the spatial pattern of the variables using the ordinal kriging function. As a result is generated a map in raster format (GeoTiff) with the predicted values.

General tab (main)	Functor Editor - Ordinary Kriging
Table in csv format (comma separated columns). Being the first column with continuous numeric values (DON'T USE CATEGORICAL VALUES or CLASSES), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named: dependent, x, y, written with lowercase letters.	? Input Points Input points (csv format) with dependent variable (with columns: dependent, x, y) E: \BioDinamica_data\Cont_data.csv ? Input Mask
Specify a file in the shapefile (.SHP) format to serve as a mask (area in which will be held the interpolation)	Shapefile (shp) of area of study E:\BioDinamica_data\Mask\Mask.shp ? Output Raster Mask
Enter the name and location of the raster file format (GeoTiff) that is saved with the test results.	E:\BioDinamica_data\OK.tif
	OK Cancel
Advanced tab	Functor Editor - Ordinary Kriging
	Ceneral Advanced R Model Specification of the variogram model: 1- exponential, 2- spherical, 3-
Choose the corresponding numbers, the variogram model used on kriging	gaussian, 4 - Matern
Choose the cell size of the resulting map (interpolated). The value must be in the same unit of the coordinate system used.	R Cell Size Cell size of output 0.05
Choose whether the Tween will be smoothed by the average of the neighbors.	Smooth Map O Smooth Interpolation map by neighbours No Smooth Map
If you have chosen the smoothing by the average of the neighbors, choose the number of neighbors that will be used in the calculation of the average.	N Number Of Pixels In Snooth
Select the reference coordinate system. The default option is WGS84 system. If you want to change this option, use the standard format Rgdal to change coordinate system.	a Coordinate Reference System Define Coordinate Reference System with standard Rgdal formatting >proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0
http://csr.ufmg.br/dinamica/dokuwiki/doku.php?id=ok	32 OK Cancel

UNIVERSAL KRIGING INTERPOLATION

Universal Kriging This function interpolates spatially values, through the spatial pattern of the variables using the universal kriging function. As a result is generated a map in raster format (GeoTiff) with the predicted values.

	Functor Editor - Universal Kriging 🛛 🗙	
General tab (main)	General Advanced	
	? Input Points	
Table in csv format (comma separated columns). Being the first column with continuous numeric values (DON'T USE CATEGORICAL VALUES or CLASSES). the second column with	Input points (csv format) with dependent variable (with columns: dependent, x, y)	
x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named: dependent, x, y,	E:\BioDinamica_data\Cont_data.csv	
written with lowercase letters.	? Input Mask	
	Shapefile (shp) of area of study	
Specify a file in the shapefile (.SHP) format to serve as a mask (area in which will be held the interpolation)	E:\BioDinamica_data\Mask\Mask.shp	shp
	D Predictor Variables	Mask
	Folder with predictors restor flee (upriphlee) in secTif format	
Enter the folder that contains the rasters (in GeoTiff format)	Folder with predictors raster files (variables) in geo fir format	
that will be used as predictors. The rasters should be cut with	🕞 : \BioDinamica_data \Predictors	Predictors
the same mask (have the same dimensions) and have the		
cells of the same size. Never use multiple rasters bands.	🕒 Output Folder	
	E:\BioDinamica_data\UK	
Enter the name and location of the raster file format (GeoTiff)		
that is saved with the test results.		
	OK Cancel	
Advanced tob	Eunctor Editor - Universal Kriging 🛛 🗙	
Auvanced tab		
	General Advanced	
	R Model	
	Specification of the variogram model: 1- exponential, 2- spherical, 3-	
Choose the corresponding numbers, the variogram model	gaussian, 4 - Matern	
used on kriging		
Choose the cell size of the resulting man (interpolated). The	R Cell Size	
value must be in the same unit of the coordinate system	Cell size of output	
used.	9.05	
Choose the cell size of the resulting map (interpolated). The	🗹 Smooth Map 🧷	
value must be in the same unit of the coordinate system	Smooth interpolation map by neighbours	
used.	No Smooth Map	
	N Number Of Pixels In Spooth	
Choose the parameter of smoothing (Lambda) of spline		
interpolation	>30	
	a Coordinate Reference System	
Select the reference coordinate system. The default ention is	Defee Coordinate Deferrers Custom with straded Data formation	
WGS84 system. If you want to change this option, use the	Denne Coordinate Reference System with standard Rgdai formaturig	
standard format Rgdal to change coordinate system.	+proj=longiat +datum=WGS84 +no_deis +ellps=WGS84	
	+cowg30%=0,0,0	
		33
http://csr.ufmg.br/dinamica/dokuwiki/doku.pbp?id=uk		
	OK Cancel	

IDW INTERPOLATION

DW Idw

This function interpolates spatially values, through the spatial pattern of the variables using the gravitational function, or the inverse of the square of the distance (IDW). As a result is generated a map in raster format (GeoTiff) with the predicted values.

General tab (main)

34

GWR – GEOGRAPHICALY WEIGHT REGRESSION

d=gwr

This function interpolates spatially values, using a non-stationary regression model based on predictors (raster format) and the spatial pattern of relations between variables.

ORDINATION AND STATISTICAL ANALYSIS
PCA – PRINCIPAL COMPONENT ANALYSIS

This function generates maps of principal components of specialized variables (raster format). The principal component analysis (PCA) is done pixel by pixel. As a result are generated for each axis of PCA rasters and a cube of rasters with all components. In addition, reports are generated with the test results.

Enter the folder that contains the rasters (in GeoTiff format) that will be used. The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands.	Functor Editor - Pincipal Component Analysis Pca Input Folder Folder with variables raster files in geoTif format :\data_test'Predictors	Rasters
Indicate the folder in which the files of results will be saved.	C:\temp\21032018 modelos\PCA	

PRINCIPAL COMPONENT ANALYSIS – PCA FOR PROJECTING

Principal Component Analysis Pca For Projecting

This function creates a map of principal components (PCA) based on variables and projects the axes of PCA in a new scenario (e.g. climate change). Are generated as a result a cube of rasters with each band represents an axis of PCA, moreover, are generated reports with details of the analysis.

	General tab (main)	
Enter the folder that contains the rasters (in GeoTiff format) that will be used. The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands.	Functor Editor - Principal Component Analysis Pca For Project X To Input Folder Folder with variables raster files in geoTif format C:/Predictors	Rasters
Enter the folder that contains the rasters (in GeoTiff format) that will be used as predictors of projection scenarios. The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. The rasters should be appointed in the same manner as were named the rasters predictors.	 Folder Scenarios Raster Folder with rasters for project in another scenario. The rasters should be named in the same way of predictors. C:/Scenario_Predictors Output Folder 	Scenario
Indicate the folder in which the files of results will be saved.	€:/temp/output	
	OK Cancel	

PCR - PRINCIPAL COMPONENT REGRESSION

Component Regression

This function generates maps based on principal component regression (PCR) through spatialized variables (raster format). The PCR is performed pixel by pixel. As a result are generated for each axis rasters of PCR and a cube of rasters with all components. In addition, reports are generated with the test results.

	General tab (main)
	Functor Editor - Principal Component Regression Pcr ×
Table in csv format (comma separated columns). Being the first column with continuous numeric values (DON'T USE CATEGORICAL VALUES or CLASSES), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named: dependent, x, y, written with lowercase letters.	? Input Points Input points (csv format) with dependent variable (with columns: dependent, x, y) C://Cont_data.csv
	D Predictors
Enter the folder that contains the rasters (in GeoTiff format) that will be used as predictors. The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands	Folder with predictors raster files (variables) in geoTif format E:/Predictors Predictors Predictors
cens of the same size. Never use multiple fasters bands.	🕒 Output Folder
	C/temp/output
Enter the name and location of the raster file format (GeoTiff) that is saved with the test results.	
	Advanced tab
	General Advanced
Enter the folder that contains the rasters (in GeoTiff format) that will be used as predictors of projection scenarios. The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. The rasters should be appointed in the same manner as were named the rasters predictors.	Folder Scenarios Raster Folder with rasters for project in another scenario. The rasters should be named in the same way of predictors. /variables_scenario
	Project In Another Scenario
Choose whether it will be held the projection of the PCR in another scenario.	Project PLSR in another scenario (future or past) Tes Project In Another Scenario
	OK Cancel

CPPLS - CANONICAL POWERED PARTIAL LEAST SQUARES

Powered Partial Least Squares Cppls

This function generates maps based on canonical powered partial least squares (CPPLS) through variables (raster format). The CPPLS is done pixel by pixel. As a result are generated for each axis of the rasters CPPLS and a cube of rasters with all components. In addition, reports are generated with the test results.

Cancel

OK

PLSR - PARTIAL LEAST SQUARES REGRESSION

Partial Least Squares Regression Plsr

This function generates maps based on partial least square regression (PLSR) through spatialized variables (raster format). The pixel by pixel PLSR is performed. As a result are generated for each axis of PLSR rasters and a cube of rasters with all components. In addition, reports are generated with the test results.

OK

Cancel

41

CORRELATION BETWEEN RASTERS

This function calculates the correlation between a set of rasters. Are saved reports on the analysis.

Enter the folder that contains the rasters (in GeoTiff format) that will be analyzed. The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands.	Functor Editor - Correlation Between Rasters	Predictors
Indicate the folder in which the files of results will be saved.	? Output Results C:/temp/correlations.txt	
Channe the converse direct more the restor formed that	Raster Input Format	
choose the corresponding numbers, the raster format that will be analyzed.	OK Cancel	

GWCORRELATION

CLUSTER OF VARIABLES

This function computes the cluster of variables (ClusofVar) of a given set of variables rasterized. Are generated reports with the results of the analysis.

Enter the folder that contains the rasters (in GeoTiff format) that will be used. The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands.	Functor Editor - Clustering Of Variables X Variables Folder with variables raster files C:/Predictors R Raster Format	Predictors
Choose the corresponding numbers, the raster format tha will be analyzed.	t 1- tif, 2- asc	
	R Number Of Clusters	
Choose the number of clusters of variables that is desired.	Choice the number of cluster of variables	
	🕒 Output Folder	
Indicate the folder in which the files of results will be saved.	C:/temp/output	
	OK Cancel	

GLOBAL MORAN I

This function performs the test of Moran (I) global, to test for the existence of Spatial autocorrelation in a given raster.

SPATIAL VARIOGRAM

This function generates a graph of a spatial variogram based on values in a given raster.

	Functor Editor - Spatial Variogram	×
	? Input Raster Input raster of variogram analysis	
Choose the raster file format (GeoTiff).	C:/temp/output/PCA1.tif	
Choose the location and name of the pdf file will be saved with the graphic analysis.	Output Figure Output plot figure in pdf file C:/temp/output/result.pdf	
	ок	Cancel

CLASSIFIERS

K-MEANS CLASSIFICATION

This function performs an unsupervised raster classification with k-means clustering.		
	General tab (main)	
Enter the folder that contains the input rasters (in GeoTiff format). The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands.	Functor Editor - Kmeans General Advanced Input Folder Folder with predictors raster files (variables) in geoTif format C:/Predictors Image: R Number Of Classes	
Choose the number of classes in which the map will be classified.	Number of classes in classification 5 ? Output KMeans Output raster of k-means classification	
Indicate the folder to saved result map.	C:/temp/output/result.tif	
	OK Cancel Advanced tab Functor Editor - Kmeans General Advanced R Number Of Interactions	
Choose the number of interactions that will be used to search for the best solution in k-means classification.	Maximum number of interactions in k-means classification 1000 IR Start Random Sets	
Choose the number of random starts that will be used to optimize the k-means clustering.		
	OK Cancel	

CLARA (CLUSTERING FOR LARGE APPLICATIONS) CLASSIFICATION

RANDOM FOREST CLASSIFICATION

This function performs an unsupervised raster classification with random forest.		
	General tab (main)	
Enter the folder that contains the input rasters (in GeoTiff format). The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands.	Functor Editor - Random Forest X General Advanced Input Folder Folder with predictors raster files (variables) in geoTif format C:/Predictors Image: Comparison of Classes	
Choose the number of classes in which the map will be sorted.	Number of classes in classification	
	Output Random Forest Output raster of Random Forest classification	
Indicate the folder to saved result map.	OK Cancel	
	Functor Editor - Random Forest X General Advanced R Sample Size In Random Forest	
Choose the number of samples used to generate the random forest optimization.	500	
Choose the number of trees that will be used in the classification by random forest.	Number of trees in Random Forest	
	OK Cancel	

UNSUPERVISED CLASSIFICATION

This function performs a unsupervised raster classification by three classifiers: K-means clustering; CLARA (Clustering for Large Applications) and random forest. General tab (main) Functor Editor - Unsupervised Classification General Advanced 🕒 Input Folder Enter the folder that contains the input rasters (in GeoTiff format). The rasters should be cut with the same mask (have Folder with predictors raster files (variables) in geoTif format the same dimensions) and have the cells of the same size. ≤:/Predictors Predictors Never use multiple rasters bands. R Number Of Classes Number of classes in classification Choose the number of classes in which the map will be 10 sorted. ☑ Kmeans Kmeans Choose if use the k-means classification. 🗹 Clara Yes Clara Choose if use CLARA rating. Random Forest Random Forest Choose if use the classification by random forest. ? Output KMeans Output raster of k-means classification Enter the name of the raster (GeoTiff format) of the result €:/datat/km.tif that will be saved to the k-means classification. ? Output Clara Output raster of clara classification Enter the name of the raster (GeoTiff format) of the result €:/data/clara.tif that will be saved to the CLARA classification. ? Output Random Forest Output raster of Random Forest classification Enter the name of the raster (GeoTiff format) of the result C:/datat/Rf.tif that will be saved to the classification by Random Forest. OK Cancel

UNSUPERVISED CLASSIFICATION

	Functor Editor - Unsupervised Classification X
Choose the number of interactions that will be used to search	R Number Of Interactions
for the best solution rating for k-means clustering	IR Start Random Sets
Choose the number of random starts will be used to optimize the k-means clustering.	Number of start random sets
Choose the number of samples used to generate CALRA	IR Sample Size In Clara
	R Distance Metric In Clara
Choose the number corresponding to the distance metric used by CLARA classifier.	1
Choose the number of samples used to generate the random forest optimization.	500 Forest
	R Number Of Trees
Choose the number of trees that will be used in the classification by random forest.	500
	OK Cancel

MINIMUM CONVEX HULL

This function generates a minimum convex polygon map through points of distribution of a species.

	Functor Editor - Minimum Convex Hull 🛛 🗙	
Table in csv format (comma separated columns). First column with the name of the species (sp), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named as: sp, x, y, written with lowercase letters.	? Input Occurrences csv table with species and coordinates of localities (with columns: sp, x, y) C:/data/Sp data.csv ? Input Mask	↓ Sp_data
Specify a file in the shapefile (.SHP) format to serve as a mask (area in which will be held the interpolation).	Shapefile (shp) of area of study C:/limits/mask.shp Output Folder	← shp Mask
Indicate the output folder.	C:/temp/output	
Choose the cell size of the resulting map (interpolated). The value must be in the same unit of the coordinate system used.	(R) Cell Size Cell size of output raster 0.05	
Choose if save a csv file with the contents of the results, showing the area of minimum convex polygon for distribution for each species.	Save Table	
	OK Cancel	

ANALYSIS OF BIODIVERSITY

SPECIES RICHNESS INTERPOLATED

Species Richness

This function generates maps of species richness in hexagons and interpolated by three methods: spline, kriging and nearest neighbor. As a result are generated maps in raster format (GeoTiff) with the values interpolated from the species richness.

Oliveira U, et al. 2019. Modelling Highly Biodiverse Areas in Brazil. Scientific Reports 9:6355.

	General tab (main)	
Table in csv format (comma separated columns). First column with the name of the species (sp), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named as: sp, x, y, written with lowercase letters.	Functor Editor - Species Richness X General Advanced Input Occurrences Csv table with species and coordinates of localities (with columns: sp, x, y) E:\BioDinamica_data\Sp data.csv Image: Species and coordinates of localities (with columns: sp, x, y)	Sp data
Indicate the folder in which the files of results will be saved.	E:\BioDinamica_Test\SR	
Specify a file in the shapefile (.SHP) format to serve as a mask (area for the interpolation).	? Input Mask Shapefile (shp) of area of study E:\BioDinamica_data\Mask\Mask.shp	🗲 Shp
Choose the size of the hexagon will be used as a sampling unit. The size must be in decimal degrees (approximately 100 km in Ecuador).	R Hexagon Size	Mask
Choose whether to save the maps in hex format.	Save Hexagon Nmds O Save hexagon NMDS raw values map? Save Hexagon Nmds	
Choose whether it will be held the nearest neighbor interpolation.	Nearest Neighbor Interpolation Interpolate by nearest neighbor? Nearest Neighbor Interpolation	
Choose whether held splined interpolation.	Spline Interpolation	
Choose whether it will be held the interpolation by kriging.	Kriging Interpolation Interpolate by kriging? Yes Kriging Interpolation	
	OK Cancel	

SPECIES RICHNESS INTERPOLATED

Advanced tab

	Functor Editor - Species Richness 🛛 🗙
	General 🔗 Advanced
	R Output Raster Resolution
Choose the cell size of the resulting map. The value should be	Define resolution of raster cells in outputs
in decimal degrees.	0.05
Choose the minimum number of samples (in the sampling	R Minimum number of samples
unit hexagonal) that will be considered in the analysis. The	
from the analysis.	
	N Shooth Factor Of Nearest Neighbor
Choice of smoothing interpolation factor for nearest	Number of neighboring pixels
neighbor.	Z ⁸
	N Smooth Factor Of Spline
	Number of neighboring pixels in smooth
Choose the smoothing factor by spline interpolation.	8
	N Smooth Factor Of Kriging
Chance emerthing factor internalation by wising	Number of neighboring pixels in smooth
	R Model In Kriging Interpolation
	Specification of the variogram model: 1- exponential, 2- spherical, 3-
Choose the corresponding numbers, the variogram model	gaussian, 4 - Matern
used on Migling.	
	UK Cancel

SPECIES RICHNESS MODEL

SRM Srm

This function predicts, by use predictors, the species richness through three models: GLM (generalized linear model), SAR (Spatial autoregressive model) and universal kriging. (adapted from: Oliveira U, et al. 2019. Modelling Highly Biodiverse Areas in Brazil. Scientific Reports 9:6355.)

General tab (main)	Functor Editor - Srm X General Advanced	_
Table in csv format (comma separated columns). First column with the name of the species (sp), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named as: sp, x, y, written with lowercase letters.	? Input Occurrences csv table with species and coordinates of localities (with columns: sp, x, y) SloDinamica_data_curso\Sp_data.csv	ESP_data
	? Input Mask	shp
Specify a file in the shapefile (.SHP) format to serve as a mask (area for the interpolation).	Shapefile (shp) with area of study E:\BioDinamica_data_curso\Mask\Mask.shp	Mask
Enter the folder that contains the rasters (in GeoTiff format) that will be used as predictors. The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands.	Predictor Variables Folder with rasters of predictor variables in tif format E:\BioDinamica_data_curso\Predictors Output Folder	Predictors
Indicate the folder in which the files of results will be saved.	C:\temp	
	Save hexagon NMDS raw values map?	
Choose whether to save the maps in hex format.	No Save Hexagon Nmds	
	Interpolate by nearest neighbor?	
Choose whether held splined interpolation.	No Nearest Neighbor Interpolation	
Choose whether it will be held the nearest neighbor interpolation.	Spline Interpolation Interpolate by Spline? No Spline Interpolation	
Choose whether it will be held the interpolation by kriging.	Kriging Interpolation Interpolate by kriging? Kriging Interpolation	
Choose whether the prediction is performed by GLM.	C Glm Ran GLM prediction	
Choose whether the prediction is performed by SAR.	Sar SAR prediction No Sar	
Choose whether it will be held by universal kriging prediction.	Universal Kriging	
Choose the size of the hexagon will be used as a sampling unit. The size must be in decimal degrees (approximately 100 km in Ecuador).	R Hexagon Size Define size of hexagons (degree). Distance between centroid of nexagons	
http://csr.ufmg.br/dinamica/dokuwiki/doku.ph p?id=srm	1 OK Cancel	57

SPECIES RICHNESS MODEL

Advanced tab

	Functor Editor - Srm 🗙 🗙
	General Advanced
	R Cell Size
Choose the cell size of the resulting map. The value should be	Cell size
in decimal degrees.	0.05
Choose the minimum number of samples (in the sampling	R Minimum Number Of Sambles
unit hexagonal) that will be considered in the analysis. The hexagons with values below the chosen will be discarded	Minimum number of samples in hexagons
from the analysis.	10
	N Shooth Factor Of Nearest Neighbor
Choice of smoothing interpolation factor for nearest	Number of neighboring pixels
neighbor.	8
	N Smooth Factor Of Spline
Choose the smoothing factor by spline interpolation.	Number of neighboring pixels in smooth
	0
	N Smooth Factor Of Kriging
Chasse smoothing factor internolation by lyiging	Number of neighboring pixels in smooth
Choose smoothing factor interpolation by kriging.	8
	R Model In Kriging Interpolation
Choose the corresponding numbers, the variogram model	Specification of the variogram model: 1- exponential, 2- spherical, 3- gaussian, 4 - Matern
used on kinging.	3
	R Error Distribution In Function Glm
Choose the corresponding numbers, the distribution of errors	Choose error distribution: 1 - binomial; 2 - gaussian; 3 - Gamma; 4 - inverse gaussian; 5 - poisson; 6 - quasi; 7 - quasibinomial; 8 -
that will be used in the GLM.	quasipoisson;
	2
	B. Cell Size Of Analysis In Sar
Choose the cell size (pixel size) used in sampling SAR analysis.	Choose a value (cell size) for sampling the variables. Very small values
This is not the VALUE of the FINAL SIZE of the PIXELS, is only used to generate the calculations. After that the final map	(high resolution) can cause error.
will be generated in the same resolution of the cells of the	-95
predictors.	R Model In Universal Kriging
	Specification of the variogram model: 1- exponential. 2- spherical. 3-
Choose the corresponding numbers, the variogram model	gaussian, 4 - Matern
useu ili universai kriging.	-1
	OK Cancel

RESAMPLE OF SPECIES RICHNESS INTERPOLATED

Σ so Resample Species Richness This function generates maps of resampled species richness in hexagons and interpolated by three methods: spline, kriging and nearest neighbor. The resampling function to simulate a uniform sampling in the study area.

Oliveira U, et al. 2019. Modelling Highly Biodiverse Areas in Brazil. Scientific Reports 9:6355.

General tab (main)	Functor Editor - Resample Species Richness X	
Table in csv format (comma separated columns). First column with the name of the species (sp), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named as: sp, x, y, written with lowercase letters.	? Input Occurrences csv table with species and coordinates of localities (with columns: sp, x, y) E:\BioDinamica_data\Sp data.csv	Sp data
	🕒 Output Folder	. –
Indicate the folder in which the files of results will be saved.	E:\BioDinamica_Test\RSR	
	? Input Mask	_
Specify a file in the shapefile (.SHP) format to serve as a mask (area for the interpolation).	Shapefile (shp) of area of study E:\BioDinamica_data\Mask\Mask.shp	shp
	R Number of runs in resemption	Mask
Choose the number of times that resampling will be round to generate average values of wealth on uniform sampling simulation		
	R Minimum Number Of Sambles	
Choose the minimum number of samples to be used for resampling. NOTE: If this number is too high may have left few samples (hexagons) for examination, which could harm	Minimum number of samples in hexagon	
the interpolation.	R Size Of Samples In Resampling	
Choose how many sub-samples will be accounted for in each round of sampling. Remember that this value must be less than the minimum number of samples (field above). It is desirable that this value does not exceed 50% of the minimum value of the samples.	Size of samples in each resampling round 10 IR Hexagon Size	
	1.5	
Choose the size of the hexagon will be used as a sampling unit. The size must be in decimal degrees (approximately 100 km in Ecuador).	Save Hexagon Nmds	
	Save hexagon NMDS raw values map?	
Choose whether to save the maps in hex format.	Save Hexagon Nmos	
Choose whether it will be held the nearest neighbor interpolation.	Interpolate by Spline?	
	Nearest Neighbor Interpolation	
Choose whether held splined interpolation.	Interpolate by nearest neighbor?	
Choose whether it will be held the interpolation by kriging	Kriging Interpolation	
http://csr.ufmg.br/dinamica/dokuwiki/doku.php?i d=resample_of_species_richness_interpolated	OK Cancel	59

RESAMPLE OF SPECIES RICHNESS INTERPOLATED

	Advanced tab
Choose the cell size of the resulting map. The value should be in decimal degrees.	unctor Editor - Resample Species Richness × Advanced ze utput raster
Choice of smoothing interpolation factor for nearest neighbor.	h Factor Of Nearest Neighbor
Choose the smoothing factor by spline interpolation. 30 N Smoot Number of ne 30 30 30 30 30 30 30 30 30 30	th Factor Of Kriging 🧷
	OK Cancel

RSRM - RESAMPLE OF SPECIES RICHNESS MODEL

This function predicts, by use predictors, the species richness resampled using three models: GLM (generalized linear model), SAR (Spatial autoregressive model) and universal kriging.

(adapted from: Oliveira U, et al. 2019. Modelling Highly Biodiverse Areas in Brazil. Scientific Reports 9:6355.)

General tab (main)	Functor Editor - Rsrm 🗙	
Table in csv format (comma separated columns). First column with the name of the species (sp), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named as: sp, x, y, written with lowercase letters.	General Advanced Tuput Occurrences csv table with species and coordinates of localities (with columns: sp, x, y) E:\BloDinamica_data_curso\\$p_data.csv	← Sp_data
Specify a file in the shapefile (.SHP) format to serve as a mask (area for the interpolation).	Input Mask Shapefile (shp) with area of study E:\BioDinamica_data_curso\Mask\Mask.shp Predictor Variables	← Shp Mask
Enter the folder that contains the rasters (in GeoTiff format) that will be used as predictors. The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands.	Folder with rasters of predictor variables in tif format E:\BioDinamica_data_curso\Predictors Dutput Folder Folder of outputs	Predictors
Indicate the folder in which the files of results will be saved.	C:\temp	
Choose whether to save the maps in hex format.	No Save Hexagon Nmds	
Choose whether held splined interpolation.	Interpolate by Spline?	
Choose whether it will be held the nearest neighbor interpolation.	Nearest Neighbor Interpolation Interpolate by nearest neighbor?	
Choose whether it will be held the interpolation by kriging.	Kriging Interpolation	
Choose whether the prediction is performed by GLM.	Interpolate by kriging? No Kriging Interpolation GIM Run GLM prediction	
Choose whether the prediction is performed by SAR.	Run SAR prediction	
Choose whether it will be held by universal kriging prediction.	Universal Kriging	
Choose the size of the hexagon will be used as a sampling unit. The size must be in decimal degrees (approximately 100 km in Ecuador).	R Hexagon Size Define size of hexagons (degree). Distance between centroid of Texagons 1	Choose how many sub-samples will be accounted for in each round of sampling. Remember that this value must be less than the minimum
Choose the number of times that resampling will be round to generate average values of wealth on uniform sampling simulation.	R Number Of Resamples Number of runs in resampling 1000	number of samples (field above). It is desirable that this value does not
Choose the minimum number of samples to be used for resampling. NOTE: If this number is too high may have left few samples (hexagons) for examination, which could harm the interpolation.	R Minimum Number Of Sambles Minimum number of samples in hexagon So R Size Of Samples In Resampling	exceed 50% of the minimum value of the samples.
http://csr.ufmg.br/dinamica/dokuwiki/doku.php?i d=rsrm	Size of samples in each resampling round 10 OK Cancel	61

RSRM - RESAMPLE OF SPECIES RICHNESS MODEL

	Functor Editor - Rsrm 🛛 🗙
	General 🧼 Advanced
Choose the cell size of the resulting map. The value should be in decimal degrees.	R Cell Size
Choose the corresponding numbers, the distribution of errors that will be used in the GLM.	R Error Distribution In Function Glm Choose error distribution: 1 - binomial; 2 - gaussian; 3 - Gamma; 4 - inverse gaussian; 5 - poisson; 6 - quasi; 7 - quasibinomial; 8 - quasinoisson:
Choose the cell size (pixel size) used in sampling SAR analysis. This is not the VALUE of the FINAL SIZE of the PIXELS, is only used to generate the calculations. After that, the final map will be generated in the same resolution of the cells of the predictors.	2 R Cell Size Of Analysis Sar Choose a value (cell size) for sampling the variables. Very small values (high resolution) can cause error. 0.5
Choose the corresponding numbers, the variogram model used in universal kriging.	R Model In Universal Kriging Specification of the variogram model: 1- exponential, 2- spherical, 3- gaussian, 4 - Matern 1
	OK Cancel

WEIGHT ENDEMISM INDEX

This function generates maps of endemicity by index endemism weighing (WE) in hexagons and interpolated by three methods: spline, kriging and nearest neighbor. Williams PH, Humphries CJ. 1994. Biodiversity, taxonomic relatedness, and endemism in conservation. Oxford: Oxford University Press. General tab (main) 💮 General 📗 Advanced ? Input Occurrences Table in csv format (comma separated columns). First csv table with species and coordinates of localities (with columns: sp, column with the name of the species (sp), the second x, y) column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named as: sp, E:\BioDinamica_data\Sp_data.csv x, y, written with lowercase letters. data 🕒 Output Folder Indicate the folder in which the files of results will be saved. E:\BioDinamica_Test\WE ? Input Mask Shapefile (shp) of area of study Specify a file in the shapefile (.SHP) format to serve as a mask 🖅 \BioDinamica_data \Mask \Mask.shp (area in which will be held the interpolation). R Hexagon Size Mask Choose the size of the hexagon will be used as a sampling 1.5 unit. The size must be in decimal degrees (approximately 100 km in Ecuador). Save Hexagon Nmds Save hexagon NMDS raw values map? Save Hexagon Nmds Choose whether to save the maps in hex format. Nearest Neighbor Interpolation Interpolate by nearest neighbor? Choose whether it will be held the nearest neighbor Nearest Neighbor Interpolation interpolation. Spline Interpolation Interpolate by Spline? Spline Interpolation Choose whether it will be held by spline interpolation. Kriging Interpolation Interpolate by kriging? Choose whether it will be held the interpolation by kriging. Yes Kriging Interpolation OK Cancel

WEIGHT ENDEMISM INDEX

	Functor Editor - Weight Endemism 🛛 🗙
	General Advanced
	R Raster Resolution
Choose the cell size of the resulting map. The value should be in decimal degrees.	Define resolution of raster cells
	0.05
	R Minimum Number Of Sambles
Choose the minimum number of samples (in the sampling unit hexagonal) that will be considered in the analysis. The	Minimum number of samples in hexagon
hexagons with values below the chosen will be discarded	
i i i i i i i i i i i i i i i i i i i	N Shooth Factor Of Nearest Neighbor 🧷
	Number of neighboring pixels
Choice of smoothing interpolation factor for nearest neighbor.	>8
	N Smooth Factor Of Spline
Chaose the smoothing factor by coline internelation	Number of neighboring pixels in smooth
Choose the smoothing factor by spine interpolation.	-8
	N Smooth Factor Of Kriging
Channe and this of a tax internal ating hubbins	Number of neighboring pixels in smooth
Choose smoothing factor interpolation by kriging.	8
	R Model In Kriging Interpolation
	Specification of the variogram model: 1- exponential, 2- spherical, 3-
Choose the corresponding numbers, the variagram model	gaussian, 4 - Matern
used on kriging.	3
	OK Cancel

WEM - WEIGHT ENDEMISM MODEL

This function predicts, by predict models: GLM (generalized linear r	ors, the weight index of endemism (WE) t model), SAR (Spatial autoregressive model)	through three and universal
were kriging.	a CL 1004 Biadiuanita tavanania alatada an ara	l andonaisna in
(adapted from: Williams PH, Humphrid conservat	tion. Oxford: Oxford University Press.)	rendemism in
General tab (main)	Functor Editor - Wem	
Table in csv format (comma separated columns). First column with the name of the species (sp), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named as: sp, x, y, written with lowercase letters.	? Input Occurrences csv table with species and coordinates of localities (with columns: sp, x, y) E:\BioDinamica_data_curso\Sp_data.csv	€ Sp_data
Specify a file in the shapefile (.SHP) format to serve as a mask (area in which will be held the interpolation).	? Input Mask Shapefile (shp) with area of study E:\BioDinamica_data_curso\Mask\Mask.shp	shp
Enter the folder that contains the rasters (in GeoTiff format) that will be used as predictors. The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands.	Predictor Variables Folder with rasters of predictor variables in tif format E:\BioDinamica_data_curso\Predictors	Predictors
Indicate the folder in which the files of results will be saved.	C:\temp	
Choose whether to save the maps in hex format.	Save Hexagon Nmds Save hexagon NMDS raw values map? Yes Save Hexagon Nmds	
Choose whether it will be held by spline interpolation	Spline Interpolation Interpolate by Spline? No Spline Interpolation	
Choose whether it will be held the nearest neighbor	No Nearest Neighbor Interpolation No Nearest Neighbor Interpolation	
Choose whether it will be held the interpolation by kriging.	Kriging Interpolation Interpolate by kriging? No Kriging Interpolation	
Choose whether the prediction is performed by GLM.	C Glm Run GLM prediction No Glm	
Choose whether the prediction is performed by SAR.	Sar Run SAR prediction No Sar	
Choose whether it will be held by universal kriging prediction.	Universal Kriging Run Universal Kriging prediction No Universal Kriging	
Choose the size of the hexagon will be used as a sampling unit. The size must be in decimal degrees (approximately 100 km in Ecuador).	R Hexagon Size 🖉	
http://csr.ufmg.br/dinamica/dokuwiki/doku.php?id=wei ght_endemism_index_interpolated	1 OK Cancel	65

WEM - WEIGHT ENDEMISM MODEL

Advanced tab

	Functor Editor - Wem 🛛 🗙
	General Advanced
	Minimum Number Of Sambles
Choose the minimum number of samples (in the sampling	Minimum number of samples in bayagen
unit hexagonal) that will be considered in the analysis. The	
from the analysis.	10
	R Model In Kriging Interpolation
	Specification of the variogram model: 1- exponential, 2- spherical, 3-
Choose the corresponding numbers, the variogram model	gaussian, 4 - Matern
used on kriging.	3
	IP. Call Size
choose the cell size of the resulting map. The value should be in decimal degrees.	
	20.05
	R Error Distribution In Function Glm
	Choose error distribution: 1 - binomial; 2 - gaussian; 3 - Gamma; 4 -
Choose the corresponding numbers, the distribution of errors	inverse gaussian; 5 - poisson; 6 - quasi; 7 - quasibinomial; 8 - quasipoisson;
that will be used in the GLM.	>
	-
	🗷 Model In Universal Kriging
Chaose the corresponding numbers, the variagram model	Specification of the variogram model: 1- exponential, 2- spherical, 3-
used in universal kriging.	gaussian, 4 - Matern
	1
	R Cell Size Of Analysis Sar
Choose the cell size (pixel size) used in sampling SAR analysis.	Choose a value (cell size) for sampling the variables. Very small values
This is not the VALUE of the FINAL SIZE of the PIXELS, is only	(high resolution) can cause error.
used to generate the calculations. After that, the final map will be generated in the same resolution of the cells of the	0.5
predictors.	
	OK Cancel

GIE - GEOGRAPHIC INTERPOLATION OF ENDEMISM

This function identifies areas of endemism through Geographical Interpolation of endemism (GIE). As a result are generated reports stating number of areas of endemism and species by area, plus, a map in raster format (GeoTiff).

Oliveira U, Brescovit AD, Santos AJ. 2015. Delimiting Areas of Endemism through Kernel Interpolation. PloS one 10:e0116673.

GIE - GEOGRAPHIC INTERPOLATION OF ENDEMISM

Advanced tab

	Functor Editor - Geographic Interpolation Of Endemism 🛛 🗙
	General Advanced
Choose the minimum number of species which shall co- occurrence (synendemism) in an area to consider it an area of endemism.	Minimum Number Of Sinendemism Minimum number of endemic species of AoEs (sinendemism)
Choose whether the consensus is generated with and without weighing of areas of endemism.	Generate Two Consensus Map Official Consensus Map Official Consensus map (with, and without weight)?
Indicate if you will be given more weight the areas of endemism have less area.	Use Weight In Consensus Give more weight to smaller classes (narrower endemism) Yes Use Weight In Consensus
Choose whether to save pictures of areas of endemism.	Save Figures
Choose the cell size of the resulting map. The value should be in decimal degrees.	R Cell Size O
	OK Cancel

SCI – SPECIES COMPOSITION INTERPOLATION

This function is the leading standards of β -diversity (species composition) by means of hexagons and interpolation. Here are available three forms of spatial interpolation of the patterns of β -diversity: spline, kriging and nearest neighbor.

Oliveira U, Vasconcelos MF, Santos AJ. 2017. Biogeography of Amazon birds: rivers limit species composition, but not areas of endemism. Scientific Reports 7:2992.

SCI – SPECIES COMPOSITION INTERPOLATION

	Advanced tab
Choose whether to partition analysis of β -diversity at nesting and replacement. NOTE: this choice will make the analysis take triple the time to run.	Eunctor Editor - Sci X
Choose the cell size of the resulting map. The value should be in decimal degrees.	R Cell Size Cell Size Cell Size Cell Size
Choose the number of axes used in the conversion of Dissimilarity Matrix by NMDS. 3 axes is recommended, because above this value axes cannot be specialized in a map RGB.	R Number Of Axis Define number of axis in NMDS analysis
Choose the number of search are performed rounds in NMDS.	R. Rounds Of Nimds Search Aximum numbers of random starts in search He000
Choose the minimum number of samples (in the sampling unit hexagonal) that will be considered in the analysis. The hexagons with values below the chosen will be discarded from the analysis.	R Minimum Number Of Samples Minimum number of samples in Hexagon 10 N Shooth Factor Of Nearest Neighbor Number of neighboring pixels
Choice of smoothing interpolation factor for nearest neighbor.	N Smooth Factor Of Spline Number of neighboring pixels in smooth
Choose the smoothing factor by spline interpolation.	R Spline Lambda Smoothing parameter the ratio of error and process variance in spline interpolation
Choose the parameter of smoothing (Lambda) of splined interpolation.	Re Model In Kriging Interpolation Specification of the variogram model: 1- exponential, 2- spherical, 3- gaussian, 4 - Matern
Choose the corresponding numbers, the variogram model used on kriging.	R Lags In Kriging Interpolation
Choose the number of "lags" used in the construction of the variogram.	N Smooth Factor Of Kriging
Choose the parameter of smoothing interpolation by kriging.	Classify Nearest Neighbor O Unsupervised Classification nearest neighbor interpolation?
Choose if the interpolated maps (for each interpolator) will be classified into discrete regions (bio-geographic regions). These regions are classified by three methods: k-means clustering, CLARA (Clustering for Large Applications), random	N Number Of Classes Of Nearest Neighbor Interpolation Number of classes 10 Classify Spline
Torest.	Insupervised Classification of Spline interpolation? Classify Spline N Number Of Classes Of Spline
Choose the number of classes in which the interpolated maps are classified. Note that ratings will be made with two classes to the value chosen. Choose many classes I hope more time because it will produce a larger number of classified maps.	Number of dasses in K-means dassification 10 Classify Kriging Unsupervised Classification of Kriging interpolation? Yes Classify Kriging
	N Number Of Classes Of Kriging

GDM – GENERALIZED DISSIMILARITY MODEL

👧 Gdm

This function is the leading standards of β -diversity (species composition) by means of predictive variables. Also tests how the variables used to explain variation in species composition.

Ferrier S, Manion G, Elith J, Richardson K. 2007. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity and Distributions 13:252–264.

General tab (main)	
Table in csv format (comma separated columns). First column with the name of the species (sp), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named as: sp, x, y, written with lowercase letters.	Sp. data
Enter the folder that contains the rasters (in GeoTiff format) that will be used as predictors. The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands.	- Predictors
Specify a file in the shapefile (.SHP) format to serve as a mask (area for the interpolation).	Mask
Choose whether to use hexagons as sampling units. In the case of data gaps and sampling differences, this option can reduce the effects of sampling. If you do not use this option, every point (location) will be considered as sampling unit.	
Choose the size of the hexagon will be used as a sampling unit. The size must be in decimal degrees (approximately 100 km in Ecuador).	

For that to be saved the pictures (view only), internet connection is needed

GDM – GENERALIZED DISSIMILARITY MODEL

SAMPLING EFFORT

Sampling Effort	
This function interpolates spatially points of occurrence (samples) to generate a map sampling effort using the interpolation kernel.	of
Oliveira U, et al. 2019. Modelling Highly Biodiverse Areas in Brazil. Scientific Reports 9:6355.	
General tab (main)	
Table in csy format (comma separated columns). First	
Points of sampling in csv format with two columns (x,y) in decimal degrees C:/data/XY_data.csv	XY_data
Specify a file in the shapefile (.SHP) format to serve as a mask (area for the interpolation).	shp
Indicate the folder in which the files of results will be saved.	Mask
R Area Of Influence Of Sampling	
Choose the search radius (area of influence) of sampling. The value must be established in meters.	
OK Cancel Advanced tab	
Functor Editor - Sampling Effort	
Choose the cell size of the resulting map. The value should be in decimal degrees.	
	73

OK Cancel

This function generates species distribution models (SDM) through various algorithms. Suitability maps are generated, maps and reports with the predictive capacity of the model tests. In this function it is possible to model a large set of species at once through the table containing the species.

Elith J, Leathwick JR. 2009. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics 40:677–697.

Table in csv format (comma separated columns).

For data that does not FEATURE the ABSENCE INFORMATION:

The first column with the name of the species (sp), the second column with the x-coordinates (longitude) and third column the coordinates y (latitude). The columns must be named as: sp, x, y, written with lowercase letters.

For data that show the information of ABSENCE:

The first column with the name of the species (sp), the second column (presence) with values 0 or 1 to indicate whether the given occurrence is corresponding to the presence or absence, the third column with the x-coordinates (longitude) and fourth column coordinates y (latitude). The columns must be named as: sp, presence, x, y, written with lowercase letters.

Enter the folder that contains the rasters (in GeoTiff format) that will be used as predictors. The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands.

Indicate the folder in which the files of results will be saved.

 Functor Editor - Sdm

 General
 Advanced

 Image: Contract Context Contrect Contrect Contract Contract Contract Contrect Contrac

General tab (main)

-older with predictors raster files (variables) in geo i if forma

E:\BioDinamica_data\Predictors

E:\BioDinamica_Test\SDM

N Choose Absence Format

Choose an absence entry format in the model. 1 - true absences; 2 - pseudoabsences; 3 - pseudoabsences based on sampling evidences

Choose the corresponding numbers, which the given type of absence that will be used in the analysis: true, pseudoabsences or pseudoabsences absences based on evidence.

Predictors

	General tab (main)		All Constants All Con
Select which algorithms will be used in the analistical of the			Contrary, Lorgin Contrary, Lorgin Contrary, Lorgin Contrary, Lorgin Contrary, Lorgin, Lor
distribution of species.	Bioclim Bioclim		Clark
	es Brt	0	C des C des
	Cart Tes Cart	0	C Pana C Pana C Pana C Rane C Rane C Pana C
	₽ Gam	0	Point P
		0	
	Yes Gbm	0	
	ives Gim		
	2 Gimnet	0	
	Z Mda V:s Mda		
	z Mars es Mars	0	
	E Rpart	0	
	P Maxike	0	
	Yes Maxlike	0	
	Yes Maxent		
Enter the location in which you will find the file "JAR"	? Maxent Jar File ddress the Maxent jar file - 1:/Maxent/maxent.jar		
program Maxent. If you do not have the program, download the address: https://biodiversityinformatics.amnh.org/open_source/maxent/	es Rf		
	Svm Yes Svm		
oc://www.ccr.ufmg.br/dinamica/dakuwiki/daku.nbn2i	OK Can	cel	75

Advanced tab Choose whether to use a custom mask for each species modeled to generate the pseudo-absences. This mask is General 🧼 Advanced constructed through a buffer around the points of Use Custom Mask occurrence of the species. This prevents are generated Use a custom mask for each species. This mask is constructed by a pseudo-absences in very distant and with very different buffer in the minimum convex polygon of the species occurrence points. This mask will be used for the select pseudo-absences. conditions from which the species occurs (which can damage prediction model). No Use Custom Mask R Buffer In Custom Mask Choose the buffer distance (in meters) for the case of the Buffer distance (meters) in custom mask for pseudoabsences choice of custom mask (previous option). 100000 R Percentage Of Samples To Training Model Percentage of data that will be used to generate the model, Percentage of the data used to train the model. The rest of the data will be used to test it the rest of the data will be used for the calculation of the statistics of the model validation. 60 R Buffer Size Buffer size (in meters) for sampling pseudoabsences Choose the buffer distance (in meters) that will be used as an 10000 area in which there will be drawn pseudo-absences. This function applies only in the case of use of pseudo-absences. R Number Of Pseudoabsences Number of pseudoabsences in sampling areas Choose the number of points that will be drawn as pseudo-100 absences. This function only applies in the case of the use of ? Sampling Points pseudo-absences. Csv filename of sampling points to pseudoabsences based on sampling evidences Choose the csv file (table) that contains the sampling points C:/ used to generate evidence-based pseudo-absences. In this R Search Radious In Sampling Effort choice, these points will generate a map of sampling, the Search radious in kernel of sampling effort in pseudoabsences based in evidence-based pseudo-absences will only be drawn in the sampling evidence places best sampled without samples of the species 60000 presence (sites with more evidence that there is a lack true). This function applies only in the case of the use of evidence-based pseudo-absences. Choose the distance from the area of influence of the kernel used to estimate sampling, in the case of the use of evidencebased pseudo-absences.

NICHE OVERLAP

This function computes the overlap between the predicted species niches through the ínidces I and Warwn D et al. (2009).

Broennimann O, et al. 2012. Measuring ecological niche overlap from occurrence and spatial environmental. :481–497.

Folder with species distribution models (do not use binary files). The files must be in GeoTiff format.	Functor Editor - Niche Overlap	Species Maps
Csv table name that will be saved with the results.	Name and path of table file to be written. File format is automatically selected based on the filename extension. If path is not specified, file location is the same of model script. table.csv	

SPATIALIZE PHYLOGENY

This function plot on the map a phylogenetic tree by hexagons and interpolation. Here are available three forms of spatial interpolation: spline, kriging and nearest neighbor. General tab (main) 💮 General Advanced Table in csv format (comma separated columns). Being the ? Input Occurrences first column with the name of the species (sp), the second csv table with species and coordinates of localities (with columns: sp, column with the x-coordinates (longitude) and third column x, y) the coordinates y (latitude). The columns must be named as: sp, x, y, written with lowercase letters. E:\BioDinamica_data\Sp data.csv ? Input Phylogenetic Tree Spatialize Input filogenetic tree in format ".tre" A phylogenetic tree of the form tre. This tree should display phylo as corresponding to the names Terminal taxa of csv table E:\BioDinamica_data\Phylo_data.tre (field above). However, there is no need for full agreement between the two files, since the tree is pruned by the table ? Input Mask and vice versa. Shapefile (shp) of area of study E:\BioDinamica_data\Mask\Mask.shp Specify a file in the shapefile (.SHP) format to serve as a mask (area for the interpolation). Mask 🕒 Output Folder Indicate the folder in which the files of results will be saved. Æ: \BioDinamica_Test \Phylogeny The Tree Has Branch Lengths Indicate whether the phylogenetic tree used (field above) The file of phylogenetic tree has branch lengths? displays the information of the branch lengths. If not, will be The Tree Has Branch Lengths considered every branch with length equal to 1. Nearest Neighbor Interpolation Interpolate by NNI? Choose whether it will be held the nearest neighbor Nearest Neighbor Interpolation interpolation. Spline Interpolation Interpolate by Spline? Spline Interpolation Choose whether it will be held by spline interpolation. Kriging Interpolation Interpolate by kriging? Yes Kriging Interpolation Choose whether it will be held the interpolation by kriging. Cancel OK

For that to be saved the pictures (view only), internet connection is needed

SPATIALIZE PHYLOGENY

Advanced tab	Functor Editor - Spatialize Phylogeny X General X Advanced
Choose the number of search are performed rounds in NMDS.	IR Rounds Of Nmds Search
Choose the number of axes used in the conversion of Dissimilarity Matrix by NMDS. 3 axes is recommended, more axles may not be specialized in a map RGB.	R Number Of Axis Define number of axis in NMDS analysis
Choose the cell size of the resulting map. The value should be in decimal degrees.	IR Cell Size
Choose the parameter of smoothing (Lambda) of splined	R Spline Lambda Smoothing parameter the ratio of error and process variance in spline interpolation 40
Choice of smoothing interpolation factor for nearest	N Shooth Factor Of Nearest Neighbor
Chaosa the smoothing factor by spling interpolation	N Smooth Factor Of Spline
Choose the smoothing factor by spline interpolation.	N Smooth Factor Of Kriging
Choose the parameter of smoothing interpolation by kriging.	8 IR Model In Kriging Interpolation
Choose the corresponding numbers, the variogram model used on kriging.	Specification of the variogram model: 1- exponential, 2- spherical, 3- gaussian, 4 - Matern
	Classify Nearest Neighbor
Choose if the interpolated maps (for each interpolator) will be classified into discrete regions (bio-geographic regions). These regions are classified by three methods: k-means clustering, CLARA (Clustering for Large Applications), random	Classify Spline
torest.	N Number Of Classes Of Spline
Choose the number of classes in which the interpolated maps are classified. Note that ratings will be made with two classes to the value chosen. Choose many classes I hope more time because it will produce a larger number of classified maps.	Classify Kriging Unsupervised Classification by Kriging interpolation? Yes Classify Kriging
	N Number Of Classes Of Kriging
	OK Cancel

PD - PHYLOGENETIC DIVERSITY

PD Phylo Diversity This function generates maps of phylogenetic diversity in hexagons and interpolated maps through three methods: spline, kriging and nearest neighbor.

Oliveira U, et al. 2019. Modelling Highly Biodiverse Areas in Brazil. Scientific Reports 9:6355

	General tab (main)
Table in csy format (comma separated columns) First	Functor Editor - Phylo Diversity X Concernation Advanced Tinput Occurrences
column with the name of the species (sp), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named as: sp, x, y, written with lowercase letters.	csv table with species and coordinates of localities (with columns: sp, x, y) E:\BioDinamica_data\Sp data.csv
A phylogenetic tree of the form tre. This tree should display as corresponding to the names Terminal taxa of csv table (field above). However, there is no need for full agreement between the two files, since the tree is pruned by the table and vice versa.	? Input Phylogenetic Tree Input filogenetic tree in format ".tre" E:\BioDinamica_data\Phylo_data.tre ? Input Mask
Specify a file in the shapefile (.SHP) format to serve as a mask (area for the interpolation).	Shapefile (shp) of area of study E:\BioDinamica_data\Mask\Mask.shp
Indicate the folder in which the files of results will be saved.	E:\BioDinamica_Test\PD
Indicate whether the phylogenetic tree used (field above) displays the information of the branch lengths. If not, will be considered every branch with length equal to 1.	The file of phylogenetic tree has branch lengths? Tes The Tree Has Branch Lengths
Choose the size of the hexagon will be used as a sampling unit. The size must be in decimal degrees (approximately 100	Save Hexagon Map Save hexagon with raw values map? Yes Save Hexagon Map
km in Ecuador).	R Hexagon Size
	Nearest Neighbor Interpolation Interpolate by nearest neighbor? Yes Nearest Neighbor Interpolation
Choose whether it will be held by spline interpolation.	Spline Interpolation Ves Spline Interpolation
Choose whether it will be held the nearest neighbor interpolation.	Kriging Interpolation Interpolate by kriging? Yes Kriging Interpolation
Choose whether it will be held the interpolation by kriging.	OK Cancel 81
d=phylogenetic diversity interpolated	

PD - PHYLOGENETIC DIVERSITY

	Functor Editor - Phylo Diversity 🛛 🗙
	General 🧼 Advanced
	N Shooth Factor Of Nearest Neighbor
Choice of smoothing internolation factor for nearest	Number of neighboring pixels
neighbor.	8
	N Smooth Factor Of Spline
	Number of neighboring pixels in smooth
Choose the smoothing factor by spline interpolation.	8
	N Smooth Factor Of Kriging
	Number of neighboring pixels in smooth
Choose smoothing factor interpolation by kriging.	8
	IR Cell Size
Choose the cell size of the resulting man. The value should be	Cell size of output raster
in decimal degrees.	0.05
	Minimum Number Of Sambles
	Minimum number of samples in hexagon
Choose the minimum number of samples (in the sampling \searrow	10
unit hexagonal) that will be considered in the analysis. The hexagons with values below the chosen will be discarded	
from the analysis.	R Model In Kriging Interpolation
	Specification of the variogram model: 1- exponential, 2- spherical, 3- gaussian, 4 - Matern
Choose the corresponding numbers, the variogram model	>3
used on kriging.	
	OK Cancel

PDM - PHYLOGENETIC DIVERSITY MODEL

PDM Pdm

This function predicts, phylogenetic diversity through three models: GLM (generalized linear model), SAR (Spatial autoregressive model) and universal kriging.

Adapted from: Oliveira U, et al. 2019. Modelling Highly Biodiverse Areas in Brazil. Scientific Reports 9:6355

General tab (main)	Functor Editor - Pdm 🗙	
Table in csv format (comma separated columns). First column with the name of the species (sp), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named as: sp, x, y, written with lowercase letters.	General Advanced Advanced Input Occurrences csv table with species and coordinates of localities (with columns: sp, x, y) Et\BioDinamica_data_curso\Sp_data.csv	← Sp_data
A phylogenetic tree of the form tre. This tree should display as corresponding to the names Terminal taxa of csv table (field above). However, there is no need for full agreement between the two files, since the tree is pruned by the table and vice versa.	P Input Phylogenetic Tree Input filogenetic tree in format ".tre" Et'BioDinamica_data_curso \Phylo_data.tre The Tree Has Branch Lengths The file of phylogenetic tree has branch lengths?	← 😧 Phylo_data
Indicate whether the phylogenetic tree used (field above) displays the information of the branch lengths. If not, will be considered every branch with length equal to 1.	The Tree Has Branch Lengths ? Input Mask Shapefile (shp) with area of study EtyBioDinamica data curso/Mask/Mask.shp	shp Mask
Specify a file in the shapefile (.SHP) format to serve as a mask (area for the interpolation).	Predictor Variables Folder with rasters of predictor variables in tif format	
Enter the folder that contains the rasters (in GeoTiff format) that will be used as predictors. The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands.	El@ioDinamica_data_curso\Predictors	Predictors
Indicate the folder in which the files of results will be saved.	Save Hexagon Map Save hexagon with raw values map?	
Choose whether to save the maps in hex format.	Nearest Neighbor Interpolation Interpolate by nearest neighbor?	
Choose whether it will be held the nearest neighbor interpolation.	No Nearest Neighbor Interpolation	
Choose whether it will be held by spline interpolation.	Interpolate by Spline? No Spline Interpolation	
	Kriging Interpolation	
Choose whether it will be held the interpolation by kriging.	Interpolate by kriging? No Kriging Interpolation	
Choose whether the prediction is performed by GLM.	Run SAR prediction	
Choose whether the prediction is performed by SAR.	GIM GLM prediction	
Choose whether it will be held by universal kriging prediction.	No Glm Universal Kriging Run Universal Kriging prediction No Universal Kriging	
Choose the size of the hexagon will be used as a sampling unit. The size must be in decimal degrees (approximately 100 km in Ecuador).	R Hexagon Size	83
http://csr.ufmg.br/dinamica/dokuwiki/doku.php?i d=phylogenetic diversity interpolated	OK Cancel	60

PDM - PHYLOGENETIC DIVERSITY MODEL

	Advanced tab
	Functor Editor - Pdm X
Choose the cell size of the resulting map. The value should be in decimal degrees.	IR Cell Size Cell size of output 0.05
Choose the minimum number of samples (in the sampling unit hexagonal) that will be considered in the analysis. The hexagons with values below the chosen will be discarded from the analysis	N Shooth Factor Of Nearest Neighbor O
Choice of smoothing interpolation factor for nearest neighbor.	Smooth Factor Of Spline O Number of neighboring pixels in smooth 8
Choose the smoothing factor by spline interpolation.	N Smooth Factor Of Kriging Number of neighboring pixels in smooth 8
Choose smoothing factor interpolation by kriging.	Minimum Number Of Sambles
Choose the corresponding numbers, the variogram model used on kriging.	Model In Kriging Interpolation Specification of the variogram model: 1- exponential, 2- spherical, 3- gaussian, 4 - Matern
Choose the cell size (pixel size) used in sampling SAR analysis. This is not the VALUE of the FINAL SIZE of the PIXELS, is only used to generate the calculations. After that, the final map will be generated in the same resolution of the cells of the	3 IR Cell Size Of Analysis In Sar Choose a value (cell size) for sampling the variables. Very small values (high resolution) can cause error. 0.5
Choose the corresponding numbers, the distribution of errors that will be used in the GLM.	R Error Distribution In Function Glm Choose error distribution: 1 - binomial; 2 - gaussian; 3 - Gamma; 4 - inverse gaussian; 5 - poisson; 6 - quasi; 7 - quasibinomial; 8 - quasipoisson; 2
Choose the corresponding numbers, the variogram model used in universal kriging.	R Model In Universal Kriging Specification of the variogram model: 1- exponential, 2- spherical, 3- gaussian, 4 - Matern
	OK Cancel

PE - PHYLOGENETIC ENDEMISM

Pem

This function generates maps of phylogenetic endemism by phylogenetic weight endemism index (PE) in hexagons and interpolated maps by three methods: spline, kriging and nearest neighbor.

Rosauer D, Laffan SW, Crisp MD, Donnellan SC, Cook LG. 2009. Phylogenetic endemism: a new approach for identifying geographical concentrations of evolutionary history. Molecular Ecology 18:4061–4072

	General tab (main)	
Table in csv format (comma separated columns). First column with the name of the species (sp), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named as: sp, x, y, written with lowercase letters. A phylogenetic tree of the form tre. This tree should display as corresponding to the names Terminal taxa of csv table (field above). However, there is no need for full agreement between the two files, since the tree is pruned by the table and vice versa.	Functor Editor - Phylo Endemism General Advanced Input Occurrences csv table with species and coordinates of localities (with columns: sp, x, y) E:\BioDinamica_data\Sp data.csv Input Phylogenetic Tree Input filogenetic tree in format ".tre" E:\BioDinamica_data\Phylo_data.tre	Sp_data
Specify a file in the shapefile (.SHP) format to serve as a mask (area for the interpolation).	Shapefile (shp) of area of study E:\BioDinamica_data\Mask\Mask.shp	shp
Indicate the folder in which the files of results will be saved.	E:\BioDinamica_Test\PE	Wask
Choose the size of the hexagon will be used as a sampling unit. The size must be in decimal degrees (approximately 100 km in Ecuador).	It is the size of hexagons The file of phylogenetic tree has branch lengths? The file of phylogenetic tree has branch lengths? The size has branch lengths	
Indicate whether the phylogenetic tree used (field above) displays the information of the branch lengths. If not, will be considered every branch with length equal to 1.	Save Hexagon Nmds	
Choose whether to save the maps in hex format.	Save Hexagon Nmds	
Choose whether it will be held by spline interpolation.	Yes Spline Interpolation Nearest Neighbor Interpolation Interpolate by pearest neighbor?	
Choose whether it will be held the nearest neighbor interpolation.	Yes Nearest Neighbor Interpolation	
Choose whether it will be held the interpolation by kriging.	Interpolate by kriging?	
http://csr.ufmg.br/dinamica/dokuwiki/doku.php?id=g	OK Cancel	85

PE - PHYLOGENETIC ENDEMISM

Advanced tab

	Functor Editor - Phylo Endemism 🛛 🗙
	General 💞 Advanced
	R Cell Size
Choose the cell size of the resulting map. The value should be	Cell size of output raster
in decimal degrees.	0.05
	R Minimum Number Of Samples
Choose the minimum number of samples (in the sampling	Minimum number of samples in hexagon
hexagons with values below the chosen will be discarded	10
from the analysis.	N Shooth Factor Of Nearest Neighbor
	Number of neighboring pixels
Choice of smoothing interpolation factor for nearest	>8
neighbor.	
	Notes a facial bains since in an anti-
Choose the smoothing factor by spline interpolation.	8
	N Smooth Factor Of Kriging
	Number of neighboring pixels in smooth
Choose smoothing factor interpolation by kriging.	8
	R Model In Kriging Interpolation
	Specification of the variogram model: 1- exponential, 2- spherical, 3-
Choose the corresponding numbers, the variogram model	gaussian, 4 - Matern
used on kriging.	
	OK Cancel

PEM - PHYLOGENETIC ENDEMISM MODEL

PEM - PHYLOGENETIC ENDEMISM MODEL

	Advanced tab
	Functor Editor - Pem 🗙
Choose the cell size of the resulting map. The value should be in decimal degrees.	R Cell Size
Choose the minimum number of samples (in the sampling unit hexagonal) that will be considered in the analysis. The hexagons with values below the chosen will be discarded from the analysis.	R Minimum Number Of Samples Minimum number of samples in hexagon
Choice of smoothing interpolation factor for nearest neighbor.	Shooth Factor Of Nearest Neighbor O Number of neighboring pixels 8
Choose the smoothing factor by spline interpolation.	N Smooth Factor Of Spline
Choose smoothing factor interpolation by kriging.	N Smooth Factor Of Kriging 🖉 Number of neighboring pixels in smooth 8
Choose the corresponding numbers, the variogram model used on kriging.	Model In Kriging Interpolation Specification of the variogram model: 1- exponential, 2- spherical, 3- gaussian, 4 - Matern
Choose the cell size (pixel size) used in sampling SAR analysis. This is not the VALUE of the FINAL SIZE of the PIXELS, is only used to generate the calculations. After that, the final map will be generated in the same resolution of the cells of the predictors.	Choose a value (cell size) for sampling the variables. Very small values (high resolution) can cause error.
Choose the corresponding numbers, the distribution of errors that will be used in the GLM.	R Error Distribution In Function Glm O Choose error distribution: 1 - binomial; 2 - gaussian; 3 - Gamma; 4 - inverse gaussian; 5 - poisson; 6 - quasi; 7 - quasibinomial; 8 - quasipoisson; 2
Choose the corresponding numbers, the variogram model used in universal kriging.	IR Model Image: Comparison of the variogram model: 1- exponential, 2- spherical, 3- gaussian, 4 - Matern 1 1
	OK Cancel

PCI - PHYLOGENETIC COMPOSITION INTERPOLATION

Pci This function is the leading standards interpolation. Here are available three	s of β-phylogenetic diversity (phylogenetic composition) by means of e forms of spatial interpolation : spline, kriging and nearest neighbor.	hexagons and
Oliveira U, et al. 2019.	Modelling Highly Biodiverse Areas in Brazil. Scientific Reports 9:6355.	
General tab (main)	Functor Editor - Pci X	
Table in csv format (comma separated columns). First column with the name of the species (sp), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named as: sp, x, y, written with lowercase letters.	x, y) E:\BioDinamica_data\Sp data.csv ? Input Phylogenetic Tree Input filogenetic tree in format ".tre"	Sp_data
A phylogenetic tree of the form tre. This tree should display as corresponding to the names Terminal taxa of csv table (field above). However, there is no need for full agreement between the two files, since the tree is pruned by the table and vice versa.	E: \BioDinamica_data \Phylo_data.tre ? Input Mask Shapefile (shp) of area of study E: \BioDinamica_data \Mask.Mask.shp	Phylo_dat
Specify a file in the shapefile (.SHP) format to serve as a mask (area for the interpolation).	Dutput Folder	Mask
Indicate the folder in which the files of results will be saved.	ElBioDinamica_Test\PCI	
Choose the corresponding numbers, the β -diversity index that will be used: 1 for Bray-Curtis and 2 for Jaccard.	Beta Diversity Index: 1-Bray-Curtis; 2-Jaccard	
Indicate whether the phylogenetic tree used (field above) displays the information of the branch lengths. If not, will be considered every branch with length equal to 1.	The file of phylogenetic tree has branch lengths? Tes The Tree Has Branch Lengths Save Hexagon Nmds	
Choose whether to save the maps in hex format.	Save hexagon with raw values map?	
Choose whether it will be held by spline interpolation.	Interpolate by nearest neighbor?	
Choose whether it will be held the nearest neighbor interpolation.	Spline Interpolation	
Choose whether it will be held the interpolation by kriging.	Kriging Interpolation	
Choose the size of the hexagon will be used as a sampling unit. The size must be in decimal degrees (approximately 100 km in Ecuador).	IR Hexagon Size	
For that to be saved the pictures (view only), internet connection is needed	OK Cancel	89
<pre>ttp://csr.utmg.br/dinamica/dokuwiki/doku.php?id=p genetic_composition_interpolation</pre>	ny	

PCI - PHYLOGENETIC COMPOSITION INTERPOLATION

	Functor Editor - Pci
	General Advanced
Choose whether to partition analysis of β -diversity at	Beta Diversity Partition Analysis
turnover and nestedness. NOIE: this choice will make the	Beta diversity partition analysis (Turnover and Nestedness)
analysis take triple the time to run.	Kes Beta Diversity Partition Analysis
	R Cell Size
Choose the cell size of the resulting map. The value should be	Cell size of output raster
in decimal degrees.	0.05
	R Number Of Axis
Choose the number of axes used in the conversion of	Define number of axis
Dissimilarity Matrix by NMDS. 3 axes is recommended, more	3
axies may not be specialized in a map RGB.	D. Rounds Of Needs Security
	Maximum numbers of random starts in search
Choose the number of search are performed rounds in NMDS.	
	10000
	R Minimum Number Of Sambles
Choose the minimum number of samples (in the sampling	Minimum number of samples in hexagon
unit hexagonal) that will be considered in the analysis. The	10
nexagons with values below the chosen will be discarded from the analysis	N Shooth Factor Of Natract Neighbor
	Number of neighboring pixels
	8
choice of smoothing interpolation factor for nearest	
neighbol.	N Smooth Factor Of Spline
	Number of neighboring pixels in smooth
Choose the smoothing factor by spline interpolation	
	R Spline Lambda
	Smoothing parameter the ratio of error and process variance in spline
Choose the parameter of smoothing (Lambda) of splined	interpolation
interpolation.	40
	R Model In Kriging Interpolation
	Specification of the variogram model: 1- exponential, 2- spherical, 3-
Choose the corresponding numbers, the variogram model	gaussian, 4 - Matern
used on kriging.	
	N Smooth Factor Of Kriging
	Number of neighboring pixels in smooth
	30
Choose the parameter of smoothing interpolation by kriging.	
	Lingupervised Classification pearest esighbor interpolation?
	Unsupervised Classification nearest neighbor interpolation?
	Unsupervised Classification nearest neighbor interpolation? Yes Classify Nearest Neighbor
	Unsupervised Classification nearest neighbor interpolation? Yes Classify Nearest Neighbor Number Of Classes Of Nearest Neighbor Interpolation
	Unsupervised Classification nearest neighbor interpolation? Yes Classify Nearest Neighbor Number Of Classes Of Nearest Neighbor Interpolation Number of classes
	Unsupervised Classification nearest neighbor interpolation? Yes Classify Nearest Neighbor Number Of Classes Of Nearest Neighbor Interpolation Number of classes
Choose if the interpolated maps (for each interpolator) will be	Unsupervised Classification nearest neighbor interpolation? Yes Classify Nearest Neighbor Number Of Classes Of Nearest Neighbor Interpolation Number of classes
Choose if the interpolated maps (for each interpolator) will be classified into discrete regions (bio-geographic regions).	Unsupervised Classification nearest neighbor interpolation?
Choose if the interpolated maps (for each interpolator) will be classified into discrete regions (bio-geographic regions). These regions are classified by three methods: k-means	Unsupervised Classification nearest neighbor interpolation? Ves Classify Nearest Neighbor Number Of Classes Of Nearest Neighbor Interpolation Number of classes Classify Spline Unsupervised Classification of Spline interpolation? Classify Spline Classi
Choose if the interpolated maps (for each interpolator) will be classified into discrete regions (bio-geographic regions). These regions are classified by three methods: k-means clustering, CLARA (Clustering for Large Applications), random	Unsupervised Classification nearest neighbor interpolation?
Choose if the interpolated maps (for each interpolator) will be classified into discrete regions (bio-geographic regions). These regions are classified by three methods: k-means clustering, CLARA (Clustering for Large Applications), random forest.	Unsupervised Classification nearest neighbor interpolation? Ves Classify Nearest Neighbor Number Of Classes Of Nearest Neighbor Interpolation Number of classes Classify Spline Unsupervised Classification of Spline interpolation? Classify Spline N. Number Of Classes Of Spline
Choose if the interpolated maps (for each interpolator) will be classified into discrete regions (bio-geographic regions). These regions are classified by three methods: k-means clustering, CLARA (Clustering for Large Applications), random forest.	Unsupervised Classification nearest neighbor interpolation?
Choose if the interpolated maps (for each interpolator) will be classified into discrete regions (bio-geographic regions). These regions are classified by three methods: k-means clustering, CLARA (Clustering for Large Applications), random forest.	Unsupervised Classification nearest neighbor interpolation?
Choose if the interpolated maps (for each interpolator) will be classified into discrete regions (bio-geographic regions). These regions are classified by three methods: k-means clustering, CLARA (Clustering for Large Applications), random forest.	Unsupervised Classification nearest neighbor interpolation?
Choose if the interpolated maps (for each interpolator) will be classified into discrete regions (bio-geographic regions). These regions are classified by three methods: k-means clustering, CLARA (Clustering for Large Applications), random forest.	Unsupervised Classification nearest neighbor interpolation?
Choose if the interpolated maps (for each interpolator) will be classified into discrete regions (bio-geographic regions). These regions are classified by three methods: k-means clustering, CLARA (Clustering for Large Applications), random forest. Choose the number of classes in which the interpolated maps are classified. Note that ratings will be made with two classes	Unsupervised Classification nearest neighbor interpolation?
Choose if the interpolated maps (for each interpolator) will be classified into discrete regions (bio-geographic regions). These regions are classified by three methods: k-means clustering, CLARA (Clustering for Large Applications), random forest. Choose the number of classes in which the interpolated maps are classified. Note that ratings will be made with two classes to the value chosen. Choose many classes I hope more time	Unsupervised Classification nearest neighbor interpolation?
Choose if the interpolated maps (for each interpolator) will be classified into discrete regions (bio-geographic regions). These regions are classified by three methods: k-means clustering, CLARA (Clustering for Large Applications), random forest. Choose the number of classes in which the interpolated maps are classified. Note that ratings will be made with two classes to the value chosen. Choose many classes I hope more time because it will produce a larger number of classified maps.	Unsupervised Classification nearest neighbor interpolation?
Choose if the interpolated maps (for each interpolator) will be classified into discrete regions (bio-geographic regions). These regions are classified by three methods: k-means clustering, CLARA (Clustering for Large Applications), random forest. Choose the number of classes in which the interpolated maps are classified. Note that ratings will be made with two classes to the value chosen. Choose many classes I hope more time because it will produce a larger number of classified maps.	Unsupervised Classification nearest neighbor interpolation?
Choose if the interpolated maps (for each interpolator) will be classified into discrete regions (bio-geographic regions). These regions are classified by three methods: k-means clustering, CLARA (Clustering for Large Applications), random forest. Choose the number of classes in which the interpolated maps are classified. Note that ratings will be made with two classes to the value chosen. Choose many classes I hope more time because it will produce a larger number of classified maps.	Unsupervised Classification nearest neighbor interpolation?

PHYLO-GDM – PHYLOGENETIC GENERALIZED DISSIMILARITY MODEL

Phylo Gdm This function map the ph variables. Rosauer DF, Ferrier S, Williams dissimilarity modelling: a new app compo	ylo β-diversity (phylogenetic composition) by predictor KJ, Manion G, Keogh JS, Laffan SW. 2014. Phylogenetic generalised proach to analysing and predicting spatial turnover in the phylogenetic psition of communities. Ecography 37:21–32
Table in csv format (comma separated columns). First	General tab (main) Functor Editor - Phylo Gdm General Advanced Input Occurrences
column with the name of the species (sp), the second column with x coordinates (longitude) and third column with coordinates y (latitude). The columns must be named as: sp, x, y, written with lowercase letters. A phylogenetic tree of the form tre. This tree should display as corresponding to the names Terminal taxa of csv table	csv table with species and coordinates of localities (with columns: sp, x, y) E:\BioDinamica_data\Sp data.csv ? Input Phylogenetic Tree Input filogenetic tree in format ".tre"
(field above). However, there is no need for full agreement between the two files, since the tree is pruned by the table and vice versa. Indicate whether the phylogenetic tree used (field above) displays the information of the branch lengths. If not, will be considered every branch with length equal to 1.	E: \BioDinamica_data \Phylo_data.tre The Tree Has Branch Lengths The file of phylogenetic tree has branch lengths? Yes The Tree Has Branch Lengths 2 Input Mask
Specify a file in the shapefile (.SHP) format to serve as a mask (area for the interpolation).	Shapefile (shp) of area of study E:\BioDinamica_data\Mask\Mask.shp R Hexagon Size Mask
Enter the folder that contains the rasters (in GeoTiff format) that will be used as predictors. The rasters should be cut	1.5 Predictors Folder with predictors raster files (variables) in geoTif format E: \BioDinamica_data \Predictors Predictors
with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands. Indicate the folder in which the files of results will be saved.	C Output Folder Folder of outputs E:\BioDinamica_Test\Phylo_GDM
	OK Cancel

For that to be saved the pictures (view only), internet connection is needed

PHYLO-GDM – PHYLOGENETIC GENERALIZED DISSIMILARITY MODEL

LEAST COST PATHS HAPLOTYPES

This function calculates the lowest cost of dispersal between populations, relying for that in data on the genetics of populations (haplotypes) and a surface of cost (for example, a distribution model). For details on the methodology see: Chan & Yoder 2011. (https://www.sciencedirect.com/science/article/pii/S1055790311000480?via%3Dihub).

Table in csv format (comma separated columns). Being the first column with the number corresponding to the haplotype (Haplotype), the second column with the x- coordinates (longitude) and third column with the coordinates y (latitude). The columns must be named: Haplotype, x, y. Choose a raster that is used as a friction surface. Can be used a model of distribution of the species (suitability), in this case, with the original values of the raster, check the following. Indicate whether the map used in the previous option was a map (no change) of species distribution model (suitability).	Functor Editor - Least Cost Paths Haplotypes ? Input Csv table with Haplotype, x, y ::\BioDinamica_data_curso\Gen_data\haplotypes_data.csv ? Input Map Species distribution model (suitability map) or friction map E:\BioDinamica_data_curso\Gen_data\sp_gen.tif Input Sdm Map No Input Sdm Map No Input Sdm Map	Gen_data
Specify a file in the shapefile (.SHP) format to serve as a mask (area for the interpolation).	E: \BioDinamica_data_curso \Gen_data \Gen_mask.shp	¥
	🗅 Output Folder	
Indicate the folder in which the files of results will be saved.	E: \output	

UTILITIES

EXTRACT VALUES TO POINTS

This function extracts the values of a set of rasters for points, creating a table with the points and the extracted values, spatially, for each point. As a result is generated a table with the points and the corresponding values of rasters.

Table in csv format (comma separated columns). First column with x coordinates (longitude) and the second column with coordinates y (latitude). The columns must be named as: x, y, written with lowercase letters. ? Input Table Csv tabe with points (columns x and y) S:/data/samples.csv Baster Folder	vints ×
Enter the folder that contains the rasters (in GeoTiff format or asc) that will be used to obtain the values. The rasters should be cut with the same mask (have the same dimensions) and have the cells of the same size. Never use multiple rasters bands.	Rasters
Indicate the folder in which the files of results will be saved. IR Raster Format Choose raster format: 1 - tif; 2 - asc	
Choose the corresponding numbers, the raster format that is in the folder chosen.	K Cancel

AREA OF DISTRIBUTIONS

This function calculates the area of distribution of binary maps (e.g., species distribution maps).

	Functor Editor - Area Of Distributions 🛛 🗙		
Enter the folder that contains the rasters (in GeoTiff format) that will be used for the calculation of the areas of distribution. Note that will be calculated the area of pixels that present value 1.	Input Folder Folder with binary rasters of species distributions C:/temp/Temp_MPC Output Table	+	Species Maps
Choose the location and name of the csv file (table) to be saved with the results.	Filename of output table C:/temp/Table.csv		
	OK Cancel		

SUM OF MAPS

This function performs the sum of maps (GeoTiff format rasters).

	Functor Editor - Sum Of Maps 🛛 🗙		
Enter the folder that contains the rasters (in GeoTiff format) that will be added. Never use multiple rasters bands.	Input Folder Folder with raster maps C:/variables	•	Species Maps
Enter the name and location of the raster file format (GeoTiff) that is saved with the test result.	Save Map Output map (raster tif) C:/temp/output/result.tif		
	OK Cancel		

NORMALIZE VALUES BETWEEN 0 AND 1

This function resample raster data values for the interval between 0 and 1

	Functor Editor - Normalize Values Between 0 And 1 🛛 🗙
Choose the raster file format (GeoTiff).	C:/temp/input.tif
Choose the location and name of the raster file (GeoTiff) that will be saved with the resampled values.	Output Map Filename of output map E:temp/output/result.tif
	OK Cancel

CREATE SAMPLE POINTS

Sample Points

This function creates samples of occurrence of species (in standard BioDinamica inputs), through binary distribution maps of species (which can be generated through distribution models or minimum convex polygon, for example)

Enter the folder that contains the binary rasters (in GeoTiff format) that represent the distribution of species.	Functor Editor - Create Sample Points	•	Species Maps
Indicate the folder in which the files of results will be saved.	Output Folder Output Folder E: \BioDinamica_Test\sample_alea\TEST		
Choose the number of samples (by species) that will be generated.	Number of points by map (species) 100 R Sampling		
Choose the corresponding numbers, if the samples shall be random or regular.	1 - random; 2 - regular;		

