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1. Deforestation-induced local and regional climate 
changes and their economic impacts on agricultural 
production 

 
Abstract 
 
Forest loss in the Brazilian Amazon has significantly impacted the climate. At both 
local and regional scales, areas that experienced higher levels of deforestation 
show a correlation between the extent of forest loss and several climate-related 
outcomes, such as delayed onset of the agricultural rainy season, reduced rainfall 
volumes, and increased temperatures. Since 1980, there has been a consistent 
delay in the onset of the agricultural rainy season, with an average shift of 30 
days. Yet this change is not uniformly distributed. In largely deforested areas, the 
delay in the onset of the agricultural rainy season has resulted in a 76-day shift, 
representing an augment of 40% from more conserved areas. Between 1999 and 
2019, some regions have experienced reductions in rainfall of up to 40% during 
the first crop season and 23% in the second season. The warming trend is more 
pronounced during the first crop season, with maximum air temperatures in some 
areas increasing by up to 15%. Amazon deforestation amplifies the risks of 
climate change from local to regional scales, with the impact being more 
pronounced at the regional level. Conserving the Amazon Forest is crucial for 
ensuring favorable climatic conditions for agricultural production, which depends 
on the climate, given that over 90% croplands are rainfed. Our results indicate 
that regional climate change is increasingly impacting crop productivity, with 
maize showing greater vulnerability. We identified significant potential economic 
losses associated with these climate impacts. From 2006 to 2019, deforestation 
alone led to an estimated economic loss of US$ 761.3 million for soybean 
production and US$ 273.3 million for maize, amounting to a loss of around US$ 
1.03 billion. This represents an average annual loss of US$ 73.3 million. These 
losses are quantified as US$ 20.30 per hectare for soybean and US$ 7.53 per 
hectare for maize, indicating a significant economic impact on a per-hectare 
basis. Furthermore, after deducting production costs, these losses represent 10% 
and 20% of the net revenues for soybeans and maize cropping, respectively. To 
sustain agricultural productivity in the Amazon, it is crucial to conserve and 
restore its native vegetation.
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1.1. Contextualization 

Since the early 1980s, Brazil's grain production has increased more than fivefold 
(IBGE, 2022), transforming the country to a major global agricultural supplier. 
Brazil now supplies 50% of the world's soy demand and 10% of maize, and 
stands out as the largest exporter of beef, contributing to 20% of global beef 
exports (TRASE, 2021). Over the last two decades, national exports of soybeans 
and maize have exceeded 1.1 billion tons, representing 12.6% of global exports 
(ComexStat, 2022). However, this agricultural expansion has incurred significant 
environmental costs, with croplands expanding on newly deforested areas and 
pastures encroaching on the Amazon's native vegetation. The conversion of 
forests to agricultural lands has caused biophysical changes that threaten the 
region's ecosystem services (Zscheischler et al., 2018; Gatti et al., 2021). 

Research highlights the Amazon forest's critical role in influencing rainfall 
patterns and temperature seasonality (Pires & Costa, 2010; Boers et al., 2017; 
Strand et al., 2018; Leite-Filho et al., 2019, 2021, 2024). Climate regulation is a 
vital ecosystem service provided by the forest, essential for sustaining agriculture 
within and beyond the region (Strand et al., 2018; Costa et al., 2019; Leite-Filho 
et al., 2021). Significant effects include a one-month extension of the dry season 
since the 1970s, a decrease in dry season evapotranspiration by 15% to 40%, 
and a consistent drop in atmospheric humidity over the Amazon in the past two 
decades. 

As a result, rising temperatures are impacting the Amazon, with projections 
indicating that deforestation alone could raise temperatures to levels akin to the 
worst global warming scenarios by 2100 (Leite-Filho et al., 2024). Irregular and 
below-average rainfall, such as the 50% reduction in the 2020/21 season, led to 
a loss of 7.3 million tons of grains. The impact of the 2021/2022 drought on soy 
production was estimated at R$72 billion, with a 12% decline in Brazil's 
Agricultural GDP from the first to the second quarter of 2022 (IBGE, 2022). The 
2023/2024 drought further caused a loss of 11.8 million tons of soybeans, with 
economic impacts exceeding R$ 4.45 billion, and a 10% decrease in maize 
production resulted in an additional loss of R$ 2.11 billion. These agricultural 
losses impair food security, hence affecting Brazilian society and global markets, 
influencing price-setting policies, transport logistics and public stock planning 
(Assad et al., 2007). It is estimated that a 1% increase in tropical deforestation 
results in an average 0.5% decrease in yield productivity, and preventing 
deforestation in the southern Brazilian Amazon could avert agricultural losses of 
up to USD 1 billion annually (Leite-Filho et al., 2021). 

1.2. Objectives and research questions 

Despite the profound impacts of deforestation on the local and regional climate 
of the Brazilian Amazon—manifested as drying, warming, and disruptions in 
weather patterns—there is limited scientific literature as to how these changes 
have already affected agricultural outputs. To fill this gap, here, we present a 
comprehensive analysis of the impacts of local and regional climate change due 
to deforestation on agricultural productivity in the Amazon over the past two 
decades, focusing on soy, maize, and pasture yields. 
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Our study answers the following questions: (a) What spatial patterns of climate 
change have occurred in the Brazilian Amazon from 1999 to 2019? (b) How has 
deforestation aggravated local and regional climate risks during the same period? 
(c) How have these climatic changes affected soy, maize, and pasture yields from 
1999 to 2019? (d) What spatial factors have influenced yields in the Brazilian 
Amazon from 1999 to 2019? (e) What are the economic losses associated with 
diminished yields from deforestation-related factors discussed in question (c)? 

The report is organized into two sections to address these five research 
questions. Firstly, we examine deforestation-induced climate changes at local 
and regional scales, addressing questions (a) and (b) using maps and time-series 
analyses to depict changes in precipitation, temperature, and the timing and 
duration of rainy and dry seasons. Secondly, we explore the economic impacts 
of these changes on soy and maize, covering questions (c), (d), and (e) through 
residual analyses, identification of spatial determinants of yield variations, and 
estimation of economic losses due to deforestation impacts. Each section 
includes visual support, such as maps and infographics, to communicate the 
findings and their implications. The overarching goal is to provide insights that 
can guide conservation strategies and climate mitigation advocacy. 

1.3. Results 

1.3.1. Deforestation-induced local and regional climate changes 

1.3.1.1. Mean long-term climate trend  

We estimated the onset of the agricultural rainy season for each grid-cell of 28 x 
28 km using the anomalous accumulation method (Liebmann et al., 2007) on BR-
DWGD rainfall data (Xavier et al., 2022) (Methods). Trends in annual rainfall 
amount and maximum air temperature were assessed for each crop season. 
Together with the onset of the agricultural rainy season, these variables are the 
ones for which there are statistically significant shifts over the last four decades, 
as determined by the Mann-Kendall test (p < 0.05) (Fig. 1.1).  
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Figure 1.1. Climate trends in the Brazilian Amazon from 1999 to 2019. Trends in the 
mean onset of the agricultural rainy season (a), annual rainfall volume (b), maximum air 
temperature (c), and minimum air temperature (f). Statistically significant decreasing 
trends in rainfall volume, warming air temperature, and onset delay are statistically 
significant based on the Mann–Kendall test (p < 0.05). 

A consistent trend in the delay of the onset of the agricultural rainy season 
resulted in a cumulative temporal shift of 30 days since 1980, on average, for the 
Brazilian Amazon as a whole (Figure. 1.1a). In areas that have experienced the 
highest levels of deforestation (with accumulated forest loss exceeding 80%), this 
delay has resulted in a 76-day cumulative shift, representing a 40% difference 
compared to more conserved areas where accumulated deforestation is less than 
20%. In 1980, soybeans were usually sowed in the first week of September and 
harvested in the first week of January. Yet, as of 2020, soybeans were sowed 
around the third week of October. This shift has set off a chain reaction, resulting 
in a delay in maize sowing until early March and final harvesting taking place in 
the initial week of May. In addition, there has been a statistically significant 
decrease in rainfall amount (Figure. 1.1b). The average annual rainfall amount 
that was around 1800 mm in the 1980s dropped to 1400 mm by 2020. In parallel, 
there has been a significant increase in air temperatures (p < 0.05). The average 
maximum air temperature has reached 40°C, a rise of 2°C compared to that of 
the 1980s (Figure. 1.1c). The average minimum air temperature has reached 
22°C (Figure. 1.1d). 

1.3.1.2. Geographic distribution of climate changes over the last two 
decades 

These changes are not equally distributed across regions and planting seasons, 
so their impact on the double cropping system varies depending on the location 
within the biome and the specific crop seasons. Based on the onset of the 
agricultural rainy season and the number of days necessary for cultivating 
soybean and subsequently maize, we define the first season from the first day of 
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the onset to the 140th day, and the second season from 141st to 260th day. Onset 
of the agricultural rainy season delayed 5 to 10%, depending on the region over 
the last decade (2010-2019) in comparison with the previous decade (1999-2009) 
(Figure. 1.2a). The southern and southeastern Amazon, where double cropping 
system is widely practiced, have experienced the most significant delays.  In 
addition to changes in the rainy seasonality, some regions have experienced 
significant reductions in rainfall amounts during both the first and second crop 
seasons, decreasing by as much as 40% in the first season and 23% in the 
second season over the recent decade when compared with the previous one 
(Figures. 1.2e and 1.2f). The warming trend, on the other hand, is more 
pronounced during the first crop season, with some regions experiencing 
maximum air temperatures up to 15% higher than that of the previous decade 
(1999-2019). 
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Figure 1.2. Spatial changes on regional climate in the Brazilian Amazon over the last 
decade (2010-2019) compared to the previous decade (1999-2009). Changes in the 
onset of the agricultural rainy season (a), rainfall volumes during the first (b) and second 
crop seasons (c), maximum air temperature during the first (d) second crop seasons, 
minimum air temperature during the first (e) and second crop seasons and native 
vegetation loss by 2019 (f).  

1.3.1.3. Differences between deforested and forest conserved regions 

More pronounced climate changes are observed in regions with higher 
percentages of forest loss. The onset of the rainy season has experienced a 
delay. For grid-cells with less than 20% of forest loss, the rainy season has 
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accumulated an average delay of 1.2 days per year, resulting in a total delay of 
approximately 24 days from 1999 to 2019. In contrast, grid-cells with more than 
80% of forest loss have experienced an average delay of 1.9 days per year, the 
equivalent of a total delay of 40 days.  

.  

 
Figure 1.3. Climate trends between 1999 and 2019 (20 years). Mean annual rainfall 
volume (a, b), maximum temperature (c, d) and minimum temperature (e, f) for grid-cells 
with extensive forest loss (a, c, e) and grid-cells with little forest loss (b, d, f). All 
decreasing trends in rainfall volume and warming temperature trends are statistically 
significant based on the Mann-Kendall test (p<0.05). 

 In addition, there are statistically significant reductions in rainfall volume and 
statistically significant warming (p < 0.05). Grid-cells with less than 20% of forest 
loss have experienced a decrease in annual rainfall volume by approximately 100 
mm per decade. In contrast, grid-cells with more than 80% of forest loss 
experienced an average decrease of approximately 180 mm per decade 
(Figures. 1.3 a and b).  Grid-cells with less than 20% of forest loss, maximum 
temperatures have risen by 1.5°C since 1999. Yet in grid-cells with more than 
80% of forest loss the maximum temperatures have increased by approximately 
2.5°C over the same period (from 30°C to 32.5°C) (Figures. 1.3 c and d). 

1.3.1.4. Spatial association of regional climate changes with forest 
loss 

Climate patterns in the study region has a strong interannual and interdecadal 
variability, largely influenced by Surface Sea Temperature gradients of the North 
and South Atlantic (Marengo et al., 2001), and a strong influence of dry season 
evapotranspiration (Fu & Li, 2004), in response to a seasonal increase of solar 
radiation (Myneni et al., 2007), complicating the attribution of climate changes to 
forest loss. Therefore, to calculate climate anomalies due to the forest loss, we 
had firstly to remove the influence of geographic location, elevation and 
interannual variability (which reflect the effects of large-scale climate 
mechanisms). Our methodology comprises four primary steps, as follows: First, 
we employed machine learning techniques to model the spatial variability of 
climate. This involved generating maps that accurately capture the climate 
variations across the Brazilian Amazon. Subsequently, in the second step, we 
rigorously assessed the accuracy of these models to ensure their reliability and 
representativeness of the spatial climate patterns. In the third step, we applied a 
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detrending procedure to the climate data, aimed at eliminating any long-term 
trends or patterns that could potentially influence the analysis (See method 
section). 

For the onset of the agricultural rainy season, both Cramer's V (0.69) and 
Spearman's ρ (0.63) exhibit associations with forest loss. In the first crop season, 
significant relationships are observed between forest loss and anomalies in 
rainfall volume (Cramer's V = 0.58, Spearman's ρ = 0.49) and maximum 
temperature (Cramer's V = 0.47, Spearman's ρ = 0.45). Similarly, in the second 
crop season, anomalies in rainfall volume (Cramer's V = 0.51, Spearman's ρ = 
0.45) and maximum temperature (Cramer's V = 0.58, Spearman's ρ = 0.55) also 
exhibit significant associations with forest loss percentages (Fig. 1.4). 

 

 

Figure 1.4. Spatial association between accumulated forest loss and estimated climate 
anomalies in the Brazilian Amazon. (a) Onset of the agricultural rainy season; (b) Rainfall 
volume during the first crop season; (c) Maximum air temperature during the first crop 
season; (d) Minimum air temperature during the first crop season; (e) Rainfall volume 
during the second crop season; (f) Maximum air temperature during the second crop 
season; (g) Minimum air temperature during the second crop season; (h) Accumulated 
Forest loss. 
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1.3.1.5. Climate risks to soy-maize double-cropping due to 
deforestation 

Grid-cells with large forest loss present a higher risk of experiencing delays in the 
onset of the agricultural rainy season compared to areas with lower levels of 
forest loss (Figure. 1.5a). For the onset of the agricultural rainy season, a delay 
≥ 14 days (two weeks) may occur once every ten years in regions with ≥ 80% of 
native vegetation (Probability of occurrence Po ≈ 0.1), whereas Po for regions 
with ≤ 20% of native vegetation loss is negligible (Po ≈ 0.02). During the first crop 
season, areas with ≥ 80% of native vegetation loss may face a reduction in rainfall 
≥ 100 mm in a return period of every five years, conversely areas with ≤ 20% of 
native vegetation loss may face a reduction in rainfall ≥ 100 mm once every ten 
years. Nevertheless, the time of return for the same level of forest loss at regional 
geographical scale doubles, indicating reduced risks due to forest conservation 
at regional scale. In the second crop season, areas with native vegetation loss ≥ 
80% may experience a reduction in rainfall ≥ 100 mm once every seven years. 
In contrast, regions with native vegetation loss ≤ 20% may experience this 
reduction in a return period of twelve years and half, which also doubles when 
considering the regional geographical scale. (Figure. 1.5). 

 

Figure 1.5. Cumulative probability density functions (CPDF) functions for the onset of 
the agricultural rainy season and rainfall anomalies in different intervals of native 
vegetation loss in the Brazilian Amazon. (a) onset of the agricultural rainy season, 
considering a maximum delay of 14 days; (b) rainfall anomalies during the first and 
second crop seasons, highlighting a critical reduction threshold of 100 mm in both 
seasons. CPDFs are calculated by using a Monte Carlo Simulation with 10 k iterations. 

In conjunction with reductions in rainfall patterns, higher air warming occurs in 
areas with large forest loss over both cropping seasons (Figure. 1.6). Particularly, 
the risks of maximum air temperature warming attributable to forest loss are more 
pronounced in the first crop season compared to the second season. Increase of 
at least 0.5°C in maximum air temperature during the first crop season, above 
the mean maximum air temperature of the recent period, may happen once every 
eight years in areas with native vegetation loss ≥ 80%, as opposed to negligible 
chances in areas with ≤ 20% of native vegetation loss (Figure. 1.6a). During the 
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second crop season, an increase of at least 0.5°C in maximum air temperature, 
above the climate normal, may occur once every four years in areas with native 
vegetation loss ≥ 80% and once every 20 years in areas with ≤ 20% of native 
vegetation loss. Both effects are also augmented or reduced, respectively for 
large or small percentages of forest loss, when considering a regional scale. 

 

 
Figure 1.6. CPDF functions for temperature anomalies in different intervals of native 
vegetation loss in the Brazilian Amazon. (a) Maximum air temperature during the first 
crop season; (b) Maximum air temperature during the second crop season; (c) Minimum 
air temperature during the first crop season; (d) Minimum air temperature during the 
second crop season. CPDFs are calculated by using a Monte Carlo Simulation with 10 
k iterations. 

1.3.1.6. Risks of reduced rainfall due to forest loss from local to 
regional scale 

Modeling studies (Akkermans et al., 2014; Zemp et al., 2017; Sampaio et al., 
2007) and empirical research (Lawrence & Vandecar, 2014; Leite-Filho et al., 
2021) indicates that the impact of forest loss on rainfall varies depending on the 
geographical scale, i.e. the size of the grid-cell of analysis and the extent of forest 
loss. By examining CPDFs at local (28 x 28 km) and regional (112 x 112 km) 
geographic scales (Figure. 1.7), this becomes apparent. Grid-cells with higher 
levels of forest loss (80-100%) are more susceptible to substantial decreases in 
rainfall and delays in the onset of the agricultural rainy season, irrespective of the 
geographic scale. Yet this effect is particularly more pronounced at the regional 
than at the local scale.  

At a local geographical scale (28x28 km grid-cells), areas with significant forest 
loss present a higher risk of experiencing delays in the onset of the agricultural 
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rainy season compared to areas with lower levels of forest loss (Figure. 1.7). For 
the onset of the agricultural rainy season, a delay of ≥ 14 days (two weeks) may 
occur once every ten years in areas with ≥ 80% of native vegetation. Meanwhile, 
in areas with ≤ 20% of native vegetation, the chances of such a delay are 
negligible. However, when considering a regional geographical scale (112x112 
km grid-cells), a delay ≥ one week in the onset of the rainy season may happen 
approximately every 20 years. Specifically, when analyzing areas with forest loss 
exceeding 80%, the likelihood of such a delay on a regional scale diverges 
significantly. Calculating the return period for these probabilities over a span of 
20 years highlights that shifts in seasonality and forest cover critically influence 
regional agricultural planning and risk assessment. 

In regions where forest loss exceeds 80%, a reduction in rainfall volume ≥ 150mm 
during the first crop season at the local scale may happen every 10 years (Figure 
1.7). This risk increases at a regional scale to once every 8 years during the same 
crop season. However, when considering a regional scale, these risks decrease 
for regions with less than 20% forest loss (indicating reduced risks due to forest 
conservation at a regional scale) and increase to once every 2 years for regions 
with 80% forest loss (indicating increased risks due to forest loss at a regional 
scale). In the second crop season, at the local scale, there is a Po ≈ 0.42 of a 
reduction of ≥ 200mm in an area with forest loss > 80%. This risk further increases 
to Po ≈ 0.57 when considering a regional size with the same accumulated forest 
loss. 

 

Figure 1.7. CPDFs for (a) anomalies of onset of the agricultural rainy season for two 
contrasting forest loss intervals and different geographical scales (28×28 km and 224 x 
224 km grid-cell sizes) and CPDFs for anomalies of rainfall volume for two contrasting 
forest loss intervals and different geographical scales (28×28 km and 224 x 224 km grid-
cell sizes) for the (b) first and (c) second crop seasons. 
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1.4. Economic effects of deforestation-induced local and regional 
climate 

1.4.1. Effects of deforestation induced climate change on yields 

To evaluate the influence of deforestation induced climate change on soybean 
and maize crop yields, it is essential to remove trends associated with factors 
beyond climate, like technological advancements improving productivity. To this 
end, we employed a generalized additive model on historical yield data (Hastie & 
Tibshirani, 1987). As a result, we calculate residues, which represent the 
deviation between the estimated (expected) yields and the observed yields 
(Method section). Despite an overall increase in soybean and maize yields 
between 2006 and 2019, when the effects of technological investment are 
removed, negative yield residues have become more prevalent and pronounced, 
affecting a larger portion of cropland in recent years (Mann-Kendall test, 
statistically significant at a 95% confidence interval, p<10-5; Figure. 1.8).  

 

Figure 1.8. Soy and maize yield residuals from 2006-2019. (a) Soybean yield fluctuation; 
(b) Maize yield fluctuation for the Amazon. Both trends are statistically significant at a 
95% confidence interval (Mann-Kendall test, p<0.05). The graph does not cover the 
entire historical climate series because the systematic survey of agricultural production 
by the Brazilian Institute of Geography and Statistics (IBGE, 2022) started distinguishing 
maize of double cropping after 2006. 

Climate changes are not geographically uniform, and their impact on crop 
seasons varies across the biome (Figure 1.9). Soybean yield residuals in the 
Brazilian Amazon range from -1,260 kg/ha to +2,290 kg/ha, while maize yields 
residuals range from -2,180 kg/ha to +1,490 kg/ha. Notably, maize losses 
surpass those of soybeans, with maize often referred to as a "suicide crop" due 
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to its higher vulnerability. In this agricultural system, soybeans are typically 
planted at the onset of the rainy season, followed by maize cultivation in the same 
area after soybean harvest. The later the second crop is sown, the lower its yield 
tends to be due to increased water stress at the end of the growing season 
(Garcia et al., 2018; Heinemann et al., 2008). The second crop, maize, is grown 
during a period of reduced rainfall, lower mean temperatures, and shorter 
photoperiods in most crop-producing regions (Borém et al., 2015). These 
environmental conditions significantly impact yields, particularly depending on a 
later time of planting.  

 

Figure 1.9. Spatial distribution of soybean and maize yield residues from 2006 to 2019 
in the Brazilian Amazon. The maps display (a) Soybean yield residues (First crop) and 
(b) Maize yield residuals (Second crop). 
 

1.4.2. Spatial determinants of the soybean and maize yields residuals 

Five main spatial determinants can explain the soybean and maize yields 
variations demonstrated above: (1) The investment made by the farmer in their 
crop depends on their economic yield from the previous year and, consequently, 
their financial availability; (2) genotype and cultivar (Kurosaki & Yumoto, 2003; 
Hao et al., 2012), (3) seeding date (Macmillan & Guiden, 2020), (4) air 
temperature (Kurosaki & Yumoto, 2003), and (5) rainfall amount. These climatic 
conditions (Determinants 2, 4 and 5), in turn, are particularly influenced by Global 
Climate change linked to Greenhouse Gases emissions (Lawrence, 2022), the 
interannual climate variability (In Brazil, significant crop losses are generally 
associated with adverse climatic effects of El Niño and La Niña phenomena) and 
(3) Regional climate changes due to land use and cover (Leite-Filho, et al., 2021).  

To analyze the influence of these factors in determining the fluctuations of 
soybean and maize yields in the Amazon, we used soybean and maize yield 
values in each grid-cell as the dependent variable of a Spatial Autoregressive 
Model (SAR) applied to panel data (Drukker, et al., 2013), while the explanatory 
variables were divided into four groups: (1) Normal climatology; (2) Interannual 
climate variability; (3) Impacts of native vegetation loss on climate and previous 
crop profitability. For the SAR, we used a weighted 8-cell neighborhood matrix 
(Tiefelsdorf, et al., 1999) and employed the Akaike information criterion (AIC) to 
assess the quality of each model relative to others, thereby providing a method 
for selecting the most appropriate model. 
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The previous crop profitability, rainfall variability during El Niño years, the impact 
of native vegetation loss on maximum temperature, and the interannual variability 
of rainfall, collectively explained 69% (r²) of the variability in soybean yield 
residuals between 2006 and 2019 (p < 0.05; AIC = 1199.5). Maximum 
temperature anomalies due to native vegetation loss emerged as the most 
statistically significant spatial determinant contributing to the reduction in 
soybean yields. For the second crop, rainfall and temperature variations during 
El Niño, maximum temperature anomalies due to native vegetation loss and the 
interannual variability in minimum temperatures explained 83% of the maize 
fluctuations (p < 0.05; AIC = 9458,2). The increase in minimum temperatures 
(both in the interannual variability and variation during El Niño) are the most 
statistically significant factors (Figure 1.9).  

 

 

Figure 1.9. Spatial determinants of yields for soybean and maize between 2006 and 
2019 in the Brazilian Amazon. The estimates are derived from Spatial Autoregressive 
Models and are presented for (a) Soybean (First crop) and (b) Maize (Second crop). 

 

1.4.3. Economic losses linked to deforestation induced climate 
changes 

To quantify potential economic losses associated with regional climate change 
due to native vegetation loss, we used a spatially explicit five-step procedure 
outlined in the method section. The economic impacts are estimated using SAR 
variables of statistically significant climate anomalies for each crop season, the 
CPDFs, the planted area from PAM spatialized using the OtimizAgro model 
(Rochedo, et al. 2018), and spatialized prices of soybean and maize from IBGE. 
All monetary values are adjusted for inflation, using U.S. inflation for values in 
dollars (USD) and Brazilian inflation for values in reais (BRL). Deforestation in 
the Amazon has led to missed opportunities to produce 1.9 million tons of 
soybeans and 182.5 million tons of maize between 2006 and 2019. This accounts 
for a total potential loss of 184.4 million tons of grains, which could have been 
mitigated through forest conservation efforts (Figure. 1.10).  
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Figure 1.10. Production losses (in sacks) associated with the effects of native vegetation 
loss on regional climate in the Brazilian Amazon between 2006 and 2019 for (a) Soybean 
(First crop) and (b) Maize (Second crop). 

Those missed opportunities imply a potential loss of US$ 761.3 million between 
2006 and 2019 for soybean production (Figure 1.11a) and US$ 273.3 million for 
maize production (Figure 1.11b). Thus, Amazon deforestation entails potential 
economic losses of US$ 1.03 billion, an annual average loss of US$ 73.3 million. 
These potential economic losses are tantamount an average of 4% of the gross 
production value of the soybean and maize during this period in the biome.  

 

Figure 1.11. Annual economic losses (USD) associated with native vegetation loss in 
the Brazilian Amazon between 2006 and 2019 (a) for soybean and maize, as well as 
economic losses per hectare due to deforestation during the same period for both crops 
(b). 
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Yet, economic losses associated with native vegetation loss are not 
geographically uniform (Figure 1.12). This uneven distribution of economic losses 
underscores the need for targeted and region-specific strategies that take into 
account the ecological and socio-economic dynamics of each area to effectively 
address and mitigate the adverse effects of native vegetation loss. 

 

Figure 1.12. Total economic losses (USD) associated with native vegetation loss in the 
Brazilian Amazon between 2006 and 2019. The figure presents the average economic 
losses and gains resulting from the climate effects of native vegetation loss for (a) 
soybean (First crop) and (b) maize (Second crop). 

By dividing the economic losses by the area planted with the double cropping 
system, it was possible to quantify the losses due to climate changes caused by 
deforestation for each hectare (Figure 1.13). This information is extremely useful 
for farmers, allowing them to make more informed decisions to mitigating climate 
risks, and to better assess the economic viability of their crops in the face of 
climate changes. Potential loss per hectare is USD 20.30 between 2006 and 
2019 in the first crop and USD 7.53 per hectare in the second crop.  

 

Figure 1.13. Total economic losses (USD) per hectare associated with native vegetation 
loss in the Brazilian Amazon between 2006 and 2019. Average economic losses per 
hectare (USD/ha) resulting from the climate effects of native vegetation loss for (a) 
soybean (First crop) and (b) maize (Second crop). 

After deducting production costs, the potential economic losses linked to native 
vegetation loss in the Brazilian Amazon represent, on average, 10% and 20% of 
the net revenues for soybean and maize over the same period, respectively. It is 
important to consider the proportion by which deforestation reduces the net 
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revenues, which is the actual profit after deducting production costs. Analyzing 
the gross production value instead can lead to an underestimation of the 
economic impacts of deforestation, as the agricultural gross value does not 
account for the necessary costs to produce the crops. The net production value 
provides a more accurate assessment of the economic impact on the farmers' 
profitability margin. 

1.5. Final remarks 

Notwithstanding uncertainties, our detrending procedure has proven to be a 
sound methodology to assess the impact of deforestation on the regional climate 
(Liebmann, et al., 2007; Rochedo, et al., 2018) and consequently on double 
cropping yields, thus providing a roadmap that policymakers can use to 
implement region-specific agricultural policies and programs. Successful 
agriculture in the region is contingent upon a stable climate. The prevalence of 
hotter and drier conditions therefore presents a challenge for grain production, 
resulting in more double cropping areas surpassing climatic boundaries for 
optimal crop growth. This trend coincides with a notable increase in soybean and 
maize crop shortfalls, especially in regions largely deforested, indicating that 
deforestation not only impacts large areas of current croplands, but also hinders 
the expansion of agriculture across the biome. Mitigating climate risks requires 
investment in adaptation solutions such as irrigation and the development of 
drought-tolerant cultivars. Still, each strategy presents its own unique challenges. 
While irrigation can mitigate yield losses under severe water stress and 
temperature increases of up to 2°C, its effectiveness is greater in drier regions, 
where water availability is limited and declining (IPCC, 2022), and irrigation 
systems require access to water, electricity, and significant investments in 
technology and management (Lathuilliere, et al., 2018). Moreover, Brazil's 
success in genetic improvement may face challenges due to climate change, 
including the spread of pathogens, shifts in growing seasons, and more frequent 
extreme events, such as floods, droughts, and wildfires (Oliveira, et al., 2022). 
Our research also holds potential significance for insurance companies in 
assessing crop failure or shortfall risks aimed at fixing insurance premiums. 
Companies could charge lower premiums to farmers in regions with larger forest 
cover, because they have less frequent and lower variations in rainfall and air 
temperature. In turn, this strategy could also incentivize forest restoration in 
largely deforested regions.  

Given that deforestation is a pivotal factor amplifying the climate change impacts 
on double cropping, conserving the biome’s native vegetation emerges as a vital 
measure to mitigate those impacts. Approximately 109.7 Mha of Amazon territory 
(74.3%) are on private properties. Brazil's soy farmers feel justified in opening 
new areas whenever they have the economic means and motivation. Because 
these decisions are influenced by shifts in credit and policies (Aragão, et al., 
2022), conservation initiatives should include prioritizing sustainable agriculture, 
excluding deforesters from agricultural supply chains as well as from bank loans 
via public and transparent traceability platforms (Nunes, et al., 2024), Thus, 
property-level land-use monitoring is a key for improving the government’s 
capacity to monitor, prevent and control conversion, degradation by helping 
strengthening the performance of federal institutions to ensure accountability for 
environmental crimes and administrative infractions linked to land conversion 
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including deforestation, forest fires and forest degradation. In addition, there is a 
need to reduce wildfires through the implementation of integrated fire 
management and fostering coordination with the Amazon states to implementing 
the Forest Code. 

Alongside enforcement and compliance mechanisms, it is essential to implement 
incentives that discourage conversion, such as payment for ecosystem services 
including economic subsidies to landowners that converse or restore native 
vegetation beyond the forest code requirements (Soares-Filho, et al., 2014), and 
the promotion of a value-based bioeconomy (Carvalho-Ribeiro, et al., 2024). 
Promoting the rich socio-biodiversity of the Amazon can foster novel 
pharmaceuticals, energy, and food sectors. Furthermore, ecotourism offers a 
balanced economic solution by promoting nature conservation and providing 
environmental education while supporting biodiversity. In the Amazon, there are 
approximately 300,000 individuals living in settlements established by their 
ancestors who escaped slavery (quilombolas) and indigenous communities 
representing 180 distinct ethnic groups. These communities are spread across 
about 400 indigenous territories and 2,500 protected quilombola territories, in 
addition to other territories in the Amazon region. The protection of these peoples' 
territorial rights is crucial to the conservation efforts of local biodiversity, which is 
closely linked to the preservation of their cultures and ways of life. 

All of this can be translated into a new agricultural development model for the 
Amazon. This model should reconcile agricultural growth with environmental 
conservation, emphasizing the restoration of degraded soils and vegetation 
(Klink, et al., 2020). To this end, it is essential to leverage existing public policies 
and national plans, such as the Brazilian Forest Code (BRASIL, 2012) and the 
Plans of Action for Prevention and Control of Conversion and Fires in the Amazon 
(PPCDAm. Additionally, key agricultural development plans like Safra and 
ABC/RenovAgro Pan can play a crucial role in this endeavor. Initiatives like the 
Innovative Finance for the Amazon, Cerrado, and Chaco (IFACC), which involves 
collaboration between the UN Environment Program,me (UNEP). 

Furthermore, it is essential to emphasize the significance of international 
collaboration. Approximately 60% and 25% of Brazil's soybean and maize 
production, respectively, were destined to the international markets during our 
study period. This surge in commodity exports is largely attributed to the rapid 
development of Asia, notably China, whose share of Brazilian exports increased 
from 2% in 2000 to 27% in 2022. Consequently, protecting the Amazon becomes 
a global imperative, as many nations rely on these biomes for food, fuel, feed, 
and ecosystem services. Collaborative efforts from governments and 
international partners are necessary to address these challenges 
comprehensively to leverage existing mechanisms for sustainable agriculture. 
This includes implementing transparent traceability platforms (e.g. SeloVerde 
Pará, www.semas.pa.gov.br/seloverde/) to exclude deforesters from agricultural 
supply chains and bank loans.  

In addition to commercial and legal cooperations, Brazil currently can lead on this 
front, hosting the G20 this year and COP30 in 2025. These events provide a 
strategic moment for Brazil to champion global change, emphasizing the 
protection and enhancement of both the Amazon. Furthermore, it presents an 
opportunity to attract investments aimed at developing an innovative model for 
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an economy centered on production, protection, and green industrialization. It is 
time for Brazil to demonstrate that preserving the Amazon is essential for 
safeguarding a more stable climate to sustain Brazilian economy and global grain 
supply.  

In sum, deforestation is a counterproductive agricultural strategy, therefore the 
conservation of the Amazon Forest is potentially the most effective policy to 
contribute to global food and biofuel production. The current trajectory of land use 
in the Brazilian Amazon jeopardizes the sustainability of the country's largely 
rainfed agricultural systems, as Brazil's agribusiness and global partners push 
the limits of nature by expanding croplands at the expense of native vegetation. 
To reverse this course, we need to act now. Quantifying the impacts of 
deforestation on the region’s ecosystem services, specifically in relation to 
climate regulation for agriculture, is one important way to convince policymakers 
and stakeholders to act before it is too late.  
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2. Assessing Amazon reforestation potential for 
climate regulation 

   
Abstract 
 
Forest restoration in the Amazon is key for reducing temperatures, increasing 
precipitation, and ensuring a favorable onset of the rainy season for double 
cropping systems. Efforts to reverse the impacts of deforestation is thus essential 
to mitigate adverse climate effects on Brazil`s agribusiness. Yet addressing 
challenges, like seed availability and land-use competition, is needed for 
successful reforestation, particularly in areas highly degraded by agriculture. 
Here, we present a case study conducted in Pará, Brazil, where we developed 
large-scale simulations of native vegetation restoration to assess the effects of 
the full compliance of the Forest Code, Brazil’s main environmental legislation, 
on improving ecosystem services, specifically rainfall regulation. The full 
compliance of the Forest Code across over 200 thousand CAR (the 
environmental online registry) land-use records would entail a restoration of 
deficits of Legal Reserve and Areas of Permanent Protection tantamount to 4.5 
million and 1 million of hectares, respectively. The strategic implementation of 
Legal Reserves and Permanent Preservation Areas as required by the Forest 
Code may translate into a profound positive shift in the rainfall regime, marked 
by an appreciable increase in precipitation volumes and an earlier onset of the 
rainy season. Roughly 80% of the existing double cropping areas in Pará would 
significantly benefit from this earlier onset. Furthermore, the simulations project 
that 70% of these areas could experience substantial increases in rainfall 
volumes. In addition to rainfall regulation, forest restoration of highly degraded 
landscapes is essential for improving ecosystem services, such as carbon 
sequestration, water regulation, and soil and biodiversity conservation. While this 
effort would bring benefits to region’s agriculture, it could also potently shift the 
region’s development towards innovative high-value products and services of a 
socio-biodiversity economy based upon the conservation of the Amazon Forest. 
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2.1. Contextualization 

Reforestation in the Amazon provides significant opportunities for ecological 
restoration, climate mitigation, and biodiversity enhancement. Research 
indicates that areas where forests have regrown experience reductions in mean 
seasonal temperatures by approximately 1.2 °C and an increase in precipitation 
by 5 mm/day, demonstrating the capacity of forest regrowth to mitigate adverse 
climate change effects (Haghtalab, et al., 2022). When consistently applied, 
restoration enhances the functionality and resilience of landscapes (Strand, et al. 
2018). Hence restoration of highly degraded landscapes is essential for 
watershed management and improving ecosystem services, such as carbon 
sequestration, water regulation, and soil and biodiversity conservation.  

To this end, challenges, such as ensuring seed availability and controlling for fire, 
must be addressed for successful implementation. In areas degraded by activities 
like mining or cattle ranching, reforestation requires the careful selection of 
species and efficient soil management strategies. Evidence suggests that native 
species can attain survival rates over 90% when optimal conditions are provided, 
highlighting the importance of tailored approaches to land rehabilitation (Gama, 
et al., 2013). Nonetheless, the complexities of reforestation in the Amazon, 
including socio-economic implications and land-use conflicts, present significant 
hurdles that must be navigated or overcome to achieve sustainable outcomes, 
both environmentally and economically. Indeed, there is a need to achieve a 
balance between economic costs and ecological outcomes. Economic incentives 
can be fostered through payments to landowners engaged in restoration 
programs. In addition, to be comprehensive and effective, restoration programs 
must embrace a sound conceptual and methodological framework, including the 
application of quantitative approaches to assess various environmental contexts 
and drivers that favor or hinder the increase of natural vegetation cover. 
Additionally, long-term assessments are indispensable to ensure the persistence 
of restoration efforts.  

Here, we present a case study conducted in Pará, Brazil, where we developed 
large-scale simulations of native vegetation restoration to assess the impacts of 
the full compliance of the Forest Code on improving ecosystem services, 
specifically rainfall regulation. Quantifying these positive benefits is a way to 
demonstrate the importance of restoring the Amazon Forest for benefiting local 
and regional economies. 

2.2. Objectives, research questions and study case 

We aimed to develop simulations for large-scale native vegetation restoration to 
analyze the potential benefits in terms of ecosystem services, with a particular 
focus on rainfall regulation. The research questions are as follows: 
 

a. What are the potential benefits from implementing large-scale 
reforestation in the Brazilian Amazon for local and regional rainfall 
patterns? 

 
b. What are the potential benefits for the agriculture of the region? 
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Our case study focuses on the state of Pará for three main reasons: (i) As of 
2023, the state of Pará boasts an impressive 104 million hectares of natural 
forest, covering approximately 84% of its total land area; conversely, it is the state 
with the largest Forest Code (FC) deficits– land-use below compliance that must 
be restored by landowners’ initiatives. (ii) The state has become a major player 
in deforestation. In 2023, Around 60% of the deforestation occurring in the 
Brazilian Amazon was concentrated in Pará, alongside its counterpart, Mato 
Grosso. (iii) Our fieldwork was conducted in Paragominas, a municipality in Pará. 
Initially, Paragominas’ economy heavily relies on industries such as timber, soy, 
and cattle ranching. At one time, it was notorious for being a significant deforester 
in the Amazon. Nevertheless, today, it serves as a compelling case study in 
environmental restauration, illustrating that it is indeed possible to restore heavily 
degraded areas. 

2.3. Results 

2.3.1. Modeling the recuperation of the Forest Code Deficit 

We developed a spatially explicit model at a spatial resolution of 10 m to allocate 
the Legal Reserves (LR) and Riparian Areas of Permanent Protection (APPs) 
within each one of all land-use registries that are uncompliant with the FC (e.g. 
only for LR a total of 75 thousand). The model seeks to optimize the individual 
allocation of LR in terms of lower within property land-use opportunity costs (e.g. 
prioritizing restoration on pastures thus avoiding soybean plantations), as well as 
improved landscape connectivity. Figure 2.1 illustrates land-use and coverage in 
the state of Pará under two distinct scenarios: (a) current (land use as of 2023) 
and the scenario of full compliance of the FC without further deforestation. The 
full compliance of the Forest Code across over 200 thousand CAR (the 
environmental online registry) records would entail a restoration of deficits of 
Legal Reserve and Areas of Permanent Protection tantamount to 4.5 million and 
1 million of hectares, respectively (Table 2.1). 

  



 
  

 

28 
 

 

Table 2.1 Land use and cover in the state of Pará under two scenarios: (a) Current 
scenario (land use as of 2023) and (b) Potential restoration of LR and APPs and 
Category colors match those in Figure 2.1. 

 Area In Hectares   

Category 
Current 

Land Use 
Scenario 

Allocation 
of Potential 

LR and 
APPs 

Difference 

Water 4,810,042 4,810,042 0 

Deforestation 
prior to 2002 
(anthropic) 

17,904,537 14,470,245 -3,434,290 

Deforestation 
after 2008 

3,630,583 1,687,494 -1,943,089 

Native forest 
vegetation 

91,938,783 91,938,783 0 

Non-forest native 
vegetation 

5,675,891 5,637,285 0 

Soybean 585,023 504,237 -80,787 

Restoration   5,568,974   

Total Area 124,544,858 124,544,858   



 
  

 

29 
 

 

 

Figure 2.1. Land use and coverage in the state of Pará under two scenarios: (a) Current scenario (land use as of 2023) and (b) Scenario of 
potential regeneration areas through the allocation of RL and APP according to the property level balance of the FC.
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In summary, our simulation suggest that the restoration mandated by the FC 
would entail a reduction 5.5 Mha of deforested areas in Pará, the equivalent of 
25% of those areas, emphasizing thus the importance of the implementation of 
the FC. 

2.3.2. Climate benefits from large-scale forest restoration 

Our study demonstrates a significant correlation between deforestation rates and 
the average onset of the rainy season anomalies (Oi,j,t)The positive trend 
indicates that as deforestation (Di,j,t) increases, there is a corresponding rise in 
the rainfall anomalies, thus suggesting that larger deforested areas experience 
more severe environmental disruptions, because the removal of forest leads to 
alterations in regional energy and humidity balance, impacting rainfall and 
temperature.  

The relationship between deforestation and anomalies can be better understood 
through the estimated regression equation: (Oi,j,t = -0.0007 Di,j,t ² + 0.10 Di,j,t + 
2.03). This model reveals the dynamics of the relationship, showing that while the 
general trend is positive, it is not linear. The presence of a quadratic term 
indicates that the effect of deforestation on anomalies may increase at a 
decreasing rate or might even change direction at higher levels. The regression 
explains a substantial portion of the variance, with an R² value of 0.76, indicating 
that 76% of the variability in environmental anomalies relates to percentage of 
accumulated deforestation (Fig. 2.2). Yet it is important to note that while the 
overall trend is consistent, specific data points exhibit fluctuations and deviations. 
These anomalies could be due to localized factors or temporary influences that 
dislocate the simple relationship between deforestation and environmental 
anomalies. Such deviations underscore the need for contextual analysis to 
thoroughly understand these unique variations. Overall, the results underscore 
the importance of considering both statistical trends and regional factors when 
evaluating the impacts of deforestation on climate anomalies.  
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Figure 2.2. Mean annual rainfall and onset of the rainy season anomalies per forest loss 
percentage within 28x28 km grid cells. Best fit polynomial model (blue line). P’i,j,t are the 
residual annual rainfall anomalies (in mm/year), where the subscripts i and j represent 
space dimensions and the subscript t represent time dimension. D represents the forest 
loss fraction (in percentage). 

 

Our analysis reveals a noteworthy correlation between percentage of deforested 
land and annual rainfall anomalies (Ri,j,t). The observed trend shows that as 
deforestation (D) increases, there is a corresponding effect on rainfall anomalies. 
This relationship is of critical importance because it suggests that forest loss is 
associated with significant variations in rainfall patterns, which can have 
substantial impacts on regional climates and ecosystems. The regression model 
(Ri,j,t = -0.04 Di,j,t ² + 1.75 Di,j,t + 68.69) characterizes this relationship, indicating 
a complex interaction. Initially, as forest loss amounts to 20%, there appears to 
be an increase in rainfall anomalies, suggesting that moderate levels of 
deforestation might lead to elevated precipitation levels. However, beyond this 
point, the equation indicates a drastic reduction in rainfall, with this decrease 
becoming more pronounced as forest loss exceeds 65%. This implies potentially 
severe alterations in rainfall patterns beyond these thresholds, reflecting 
significant ecological and climatic disruptions. The regression model captures a 
significant portion of the variability in annual rainfall anomalies — 86% of the 
variation (R² = 0.86) can be attributed to forest loss.  
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Building upon the equations and property-level regeneration simulations 
previously discussed, we rigorously quantified the impact of simulated forest 
regeneration on the Amazon's rainfall patterns, with a specific focus on both 
volume and seasonality (Figure 2.3). The strategic implementation of Legal 
Reserves and Permanent Preservation Areas as required by the FC 
demonstrates a significant reduction in accumulated forest loss in Pará. This 
reduction translates into a profound positive shift in the rainfall regime, marked 
by an appreciable increase in precipitation volume and an earlier begin of the 
rainy season. Roughly 80% of the existing double cropping areas in Pará would 
significantly benefit from this earlier onset. Furthermore, the simulations robustly 
project that 70% of these areas could experience substantial increases in rainfall 
volumes. Such an increase not only fulfills the critical water requirements of 
crops, but also has the potential to substantially enhance soil moisture levels. 
The greatest reductions in accumulated deforestation after regeneration 
modeling occur in the southeastern and northeastern parts of Pará, the most 
deforested regions. 
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Figure 2.3. Increase of forest cover (a) and its effects on the onset of the raining season and rainfall volumes. 
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Large-scale forest restoration is Pará may result in an average recede of 5 days 
in the onset of the rainy season for each 28x28 km cells (or 78,400 ha) located 
in the state of Pará. In some regions, the earlier onset could reach up to 19 days 
(Figure 2.3b). Additionally, there was an observed average increase of 10 mm in 
rainfall per 28x28 km pixel (or 78,400 ha) compared to the current land-use. Still, 
in some regions, this increase could amount to 152 mm (Figure 2.3c). 

This earlier onset of the rainy season and increased rainfall volumes suggest a 
potential return to the hydrological dynamics that were more typical before the 
occurrence of large-scale deforestation. Specifically, the spatial gradient of the 
onset of the agricultural rainy season depicts the southward advance of the ITCZ 
(Intertropical Convergence Zone), corresponding to a gradual implementation of 
the South American monsoon (from NW to SE) (Liebmann & Mechoso, 2011). 
This monsoon period is usually after the maximum seasonal temperature during 
the dry winter season. During this temperature peak, rain formation at the onset 
of the rainy season is very dependent on forests, which provide water vapor and 
latent heat to the atmosphere (Wright et al., 2017). The higher rates of 
evapotranspiration of the rain forest cause an increase of shallow convection that 
moistens and destabilizes the atmosphere during the initial stages of the 
transition from the dry season to the rainy season. This mechanism – Shallow 
convection moisture pump (SCMP, Wright, et al., 2017) – preconditions the 
atmosphere at the regional scale for a rapid increase in rain-bearing deep 
convection, which in turn drives moisture convergence and rainy season onset 
before the complete southward shift of the ITCZ over the region. 

Pastureland and soybean croplands are the main types of land conversion for 
agricultural use in the region. Rainforest evapotranspiration around 3.8 mm.day−1 
(Costa, et al., 2010) provides sufficient moisture for localized, mesoscale 
convective events. The injection of water vapor in pastureland regions (1 
mm.day−1) is a much weaker source of moisture, while in cropland areas, 
evapotranspiration can be assumed to be zero in the weeks before crop sowing 
and germination. Moreover, tropical forests around 10°S in the Amazon have 
higher evapotranspiration rates during the end of the dry season than during the 
rainy season, because of higher solar radiation and higher vapor pressure deficit 
(Costa, et al., 2010) and rainforest phenology (Wu, et al., 2016). On the other 
hand, pastures and croplands have a strong evapotranspiration seasonal cycle, 
so that larger differences between wet and dry season evapotranspiration are 
expected in deforested areas. In addition, in pastureland areas, net radiation at 
the surface is 6.2% less than in the rainforest, while in soybean croplands, the 
decrease in net radiation is 7.0% (Sampaio, et al., 2007). In short, large-scale 
restoration would increase the resilience of pasture and crops lands in face of a 
changing climate 
 

2.4. Conclusions and recommendations 

Our study highlights the transformative potential of restoring the Amazon Forest, 
particularly in Pará, the historical largest deforester. Our findings underscore that 
strategic restoration can offer significant climate benefits, such as the earlier 
onset of the rainy season and increased precipitation, which are critical for 
mitigating climate change impacts. These improvements can enhance crop yields 
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and reduce dependency on irrigation systems, promoting a more sustainable 
agricultural environment. Implementing the FC is thus the main drivers of 
ecosystem service restauration, resulting in a benefit to the regional agriculture, 
especially in areas heavily impacted by historical deforestation. And there are 
many co-benefits, such, biodiversity enhancement and socio-biodiversity 
economy, hence the promotion of a sustainable bioeconomy in the Amazon. 

To maximize the benefits of forest restoration, challenges such as seed 
availability, competition with agricultural expansion, and socio-economic 
influences must be addressed. Rehabilitating lands degraded by cattle ranching 
requires careful species selection and soil management to optimize ecological 
outcomes. The Paragominas regions illustrates the potential for ecological 
restauration, demonstrating that transitioning from exploitative land use to 
ecological restoration can improve the resilience of agriculture. 

Our results also encourage farmers in highly deforested areas to promote forest 
restoration, as these regions could benefit from an extended rainy season. 
Although individual ranches in the Amazon can be very large, these climate 
benefits will likely be realized through community efforts. The sustainable 
management of the forest and potential for a low-risk intensive double cropping 
system expand the benefits of high forest conservation levels mandated by the 
Forest Code. Furthermore, preserving the Amazon's vast biological assets can 
shift the region’s economic towards innovative high-value products and services, 
leveraging advances in biotechnologies of the Fourth Industrial Revolution 
(Nobre, et al., 2016). To fully harness the benefits of Amazon restoration, 
balancing economic costs and ecological outcomes is essential. Economic 
incentives, such as payments to landowners engaged in restoration programs, 
can encourage participation. Restoration initiatives should be guided by 
comprehensive frameworks that include long-term ecological assessments. This 
holistic approach will ensure successful reforestation efforts, contributing 
positively to the conservation and regeneration of one of the planet's most vital 
ecosystems. 
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3. Deforestation-induced local and regional climate 
changes and associated impacts on pasture quality 

 
Abstract 
 

The livestock sector is one of the cornerstones of Brazil's economy, with cattle 
ranching significantly contributing to agribusiness and global trade. This study 
examines the impact of regional climate change, largely driven by extensive 
deforestation, on pasture quality in the Brazilian Amazon between 1999 and 
2019. We analyzed spatial patterns of rainfall changes during the dry season as 
well as the lengthening of it over these two decades. In largely deforested areas, 
we observe reductions in rainfall volume up to 165 mm and the lengthening of 
dry season up to 89 days, with deforestation alone accounting for 39 days (i.e. 
40%). These changes have led to a shift towards lower-quality pastures, hence 
economic losses from these declines due to reduced forage and increased 
management costs. Spatial variations in pasture quality highlight the need for 
targeted interventions to mitigate climate risks. Our findings emphasize the close 
connection between deforestation, climate change, and livestock productivity, 
underscoring the urgent need for halting deforestation to ensure the long-term 
sustainability of the beef industry in the region.
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3.1. Contextualization 

 The livestock sector is a cornerstone of Brazil's economy, significantly 
contributing to agribusiness and international trade. This sector not only supports 
employment but also places Brazil as the world’s largest beef exporter. Brazil is 
poised to remain a leading global producer of beef, with optimistic export 
forecasts indicating a strong competitive edge in international markets (Silva, et 
al., 2008). However, deforestation induced by ranching expansion over Amazon 
Forest causes regional climate change that significantly impacts pasture quality 
through rise in temperature, diminished precipitation, and increase in the length 
of the dry season. Increased temperatures can enhance pasture productivity but 
may reduce nutrient concentrations, particularly in protein and phosphorus 
(Martins-Noguerol et al., 2023). Additionally, reduced rainfall over the dry season 
also affects nutrient concentrations with varying impacts on pasture productivity 
based on historical grazing intensity and management practices. 

3.2. Objectives and research questions 

Despite the profound impacts of deforestation on the local and regional climate 
of the Brazilian Amazon, manifested as drying, warming, and disruptions in 
weather patterns, there is limited scientific literature as to how these changes 
have already affected cattle ranching. To fill this gap, here we present an analysis 
of the impacts of regional climate changes due to deforestation on pasture quality 
in the Amazon over the past two decades. Our study addresses the following 
questions: 

(a) To what extent rainfall changes during the dry season have occurred 
in the Brazilian Amazon from 1999 to 2019? 

 
(b) To what extent has extensive deforestation aggravated local and 
regional climate risks to cattle ranching? 

 
(c) How have these changes affected pasture quality in the Brazilian 
Amazon? 

3.3. Results 

3.3.1. Changes in rainfall volume during the dry season 

The Brazilian Amazon has experienced significant spatial variations in the rainfall 
regime, underscoring the need for geographically targeted interventions. Over 
the past two decades, there has been a striking lengthening of the dry season up 
to 89 days, with the most pronounced extension occurring in the southern and 
eastern Amazon (Figure 3.1a). The prolongation of the dry season directly 
impacts beef production by hindering the growth of grasses, affecting, as a result, 
animal health and productivity. Additionally, there has been a notable decrease 
in precipitation except over the Intertropical Convergence Zone (ITCZ) in the 
Amazon, which plays a crucial role in shaping the region's rainfall patterns. The 
reduction in rainfall reaches -165 mm with the most significant decreases 
occurring in the southern and central parts of the Amazon (Figure 3.1a). This 
spatial variation indicates that some areas are experiencing dryer conditions than 
others, highlighting the need for differentiated responses to address these 
specific challenges. For rain-fed pasturelands, reduced rainfall in the dry season 
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can lead to pasture degradation, water scarcity, and increased vulnerability to 
drought-related animal health issues. 

These changes pose significant challenges for the ranching sector. The 
prolonged dry period intensifies the duration of elevated climatic risk for the 
livestock, primarily through reduced forage availability. Soil moisture levels drop 
under reduced rainfall, negatively affecting grassland health and, consequently, 
the nutritional quality of forage available for the cattle (Milazzo, 2022). This 
phenomenon is particularly evident in regions like Queensland, where dry periods 
averaging eight years correlate with substantial pasture degradation and declines 
in stock density (McKeon, et al., 2021). Extended dry spells lead to diminished 
pasture resources, directly affecting the livestock health and productivity (Ogenga 
& Mugalavai, 2019). The frequency of dry spells exacerbates the likelihood of 
drought, further straining livestock systems and increasing food insecurity. While 
providing fodder can temporarily alleviate feeding needs, it entails higher 
production costs and may lead to long-term pasture degradation if not managed 
sustainably (Müller, et al., 2015). Drought conditions also lead to decreased hay 
productivity and hence increased hay prices, forcing ranchers to adapt their 
feeding strategies (Rodziewicz, et al., 2022).  
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Figure 3.1. Spatial changes on rainfall patterns in the Brazilian Amazon over the last decade (2010-2019) compared to the previous decade 

(1999-2009). (a) Lengthening of the dry season and (b) rainfall volume variation over the dry season. 

(a) Lengthening of the dry season (b) Rainfall variation over the dry season
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3.3.2. Spatial Variations in Pasture Quality  

 Figure 3.2a illustrates the historical transition rates between different pasture 
quality categories, offering a picture of change. The high transition rates between 
medium and high quality, and vice-versa, suggest a dynamic but not necessarily 
steady-state equilibrium. The low transition rate from high to low quality might 
seem encouraging, but this can be misleading, because it does not necessarily 
reflect a stable situation, but rather a slower deterioration from the top-quality 
level.  

Sankey diagram (Figure 3.2b) provides a visual representation of the overall trend 
in pasture quality. The diagram clearly shows a movement towards lower-quality 
pastures, with a shift from high-quality pastures to medium and low-quality 
pastures. This visual representation starkly indicates a broader problem beyond 
mere fluctuations. The spatial distribution of these transitions across the Amazon 
varies as a function of several factors, including management practices, e.g. 
pasture maintenance, renovation, and rotation, the regional climate, and age of 
pasture installation, i.e. conversion from forest. Regarding the latter, we can 
observe, except for Acre, Mato Grosso, and Rondônia, with these two states 
investing heavily in the expansion of feedlots operations and some cattle 
intensification, that the overall stock density of the Amazon herd has become 
virtually the same, and even declined, due to mostly pasture expansion following 
deforestation (Figure 3.3). As a result, the decline in pasture quality in the region 
strongly affects the profitability of the beef industry. 
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Figure 3.2. (a) Transition rates of pasture quality categories from the 1999-2009 to 2010-2019.  (b)  Sankey diagram of pasture quality decrease. 

Source Mapbiomas (2024). 
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Figure 3.3 Variation in stock density (heads/ha) in the Amazon states 

3.3.3. Environmental Determinants of pasture quality 

Figure 3.4 shows the intricate interplay of factors shaping the Amazon's 
environment. Red arrows highlight the key drivers of pasture quality decline, 
underscoring the significant negative influence of human activities and climate 
change. Deforestation, leading to habitat fragmentation and altered hydrological 
cycles, plays a major role. Previous year rentability, an indicator of more intensive 
ranching practices, can also signify unsustainable land-management practices 
that deplete soil nutrients and degrade pasture quality. Natural climate variability, 
with increasing occurrences of extreme weather events like droughts and floods, 
further exacerbates the pressure on the ecosystem. The spatial distribution of 
these factors indicates areas of greater vulnerability to degradation, necessitating 
targeted interventions to mitigate their impact. These factors have a significant 
impact on rain-fed livestock systems, as they directly affect pasture quality, water 
availability, and the overall health and productivity of livestock.
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Figure 3.4. Weights of evidence of spatial determinants of pasture quality reduction in the Brazilian Amazon from 2001 to 2019. Red arrows 

indicate the spatial determinants that, when increased (+) or decreased (-), contribute to the reduction of pasture quality, whereas green arrows 

indicate factors that have the opposite effect. 
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Figure 3.4 illustrates the complex balance between climate variables in the 
Amazon. Green arrows represent factors that can potentially contribute to 
improve pasture quality, whereas red arrows link the factors that influence 
pasture degradation. Dominant negative impacts of deforestation and climate 
change often nullify the positive influence of other climate variables. Regardless 
of the dominant factors, the restoration of pasture quality in the Amazon requires 
a shift towards sustainable land-management practices that minimize the 
negative impacts of human activities while maximizing the positive influences of 
natural processes. The spatial variation in the effectiveness of these practices 
emphasizes the need for geographically targeted interventions to ensure the 
most effective forest restoration along pasture renovation strategies. 

3.3.4.  Interconnection between forest loss and pasture quality 

Figure 3.5 unveils the interconnectedness between forest loss in the Amazon and 
pasture quality. Figure 3.5a illustrates the largely deforested areas across the 
region. The loss of forest cover, especially in the southern and eastern parts of 
the Amazon, has a cascading effect on the entire ecosystem, disrupting the 
delicate balance of water cycles, microclimates, and biodiversity.  

Figures 3.5 (a) to 3.5 (c) demonstrate the consequences of deforestation on 
rainfall patterns. The extension of the dry season plus reductions in rainfall during 
the same period further exacerbates drought conditions, creating a feedback loop 
that intensifies the pressure on the livestock activities.  
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Figure 3.5. (a) Accumulated Forest loss (%), (b) anomalies in the length of the dry season, (c) Anomalies in rainfall volume during the dry season, 

Granger causality test with Lag =1, p < 0.05. 

(c) Anomalies of rainfall amount during the dry season

(b) Anomalies in the length of dry season(a) Accumulated forest loss (%)
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3.4. Final remarks 

 While reduced rainfall poses significant challenges, some ranchers may adapt 
through improved management practices and diversification of forage species to 
mitigate these effects. Ranchers may face herd liquidation as drought intensifies, 
leading to temporary revenue increases, but long-term income declines due to 
reduced herd sizes (Rodziewicz, et al., 2022). Effective grazing management 
becomes crucial, as overgrazing exacerbates land degradation under changing 
rainfall patterns (Souza, et al., 2020). 

Farmers are encouraged to adopt strategies that enhance feed reserves, like 
fodder, and manage livestock sales to mitigate risks associated with climatic 
variability (Gray, et al., 2007). Conversely, some argue that traditional practices 
may not sufficiently address the complexities of climate change, necessitating a 
shift towards more adaptive and sustainable livestock management strategies to 
ensure resilience in the face of prolonged dry periods (Salem, et al., 2011). As 
climate change increasingly poses challenges to pasture quality, thus the 
profitability of cattle ranching, adaptive management strategies, such as 
maintaining tree cover in silvopastoral systems, together with moderate and 
rotated grazing, could, on the other hand, buffer adverse climate effects, 
upholding soil fertility and pasture quality (Martins-Noguerol, et al., 2023) 
(Hidalgo-Galvez, et al., 2023). Yet the complexity of these interactions 
necessitates further research so as to design localized adaptation strategies.  
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4.  Stakeholder engagement 

 
Abstract 
 
The goal of the stakeholder engagement process is to describe and characterize 
how farmers have changed their attitudes (opinions and beliefs) and behavior 
(e.g., farming practices) over the past 20 years in the context of extreme events 
and changes in temperature and rainfall; outline Amazon farmers' and ranchers' 
reactions to these extreme climate events; identify factors driving or hindering 
landowners' responses, including potential maladaptation; and understand 
farmers' awareness concerning the forest's role in climate regulation and the 
impact of deforestation on their agricultural activities and land-use decisions. 
Here, we describe the stakeholder engagement protocol implemented over a 10-
month period, comprising five stages: 1) scoping, 2) semi-structured 
questionnaires, 3) interviews, 4) case study selection, and 5) research 
dissemination. We contacted over 20 farming organizations and conducted 13 
semi-structured interviews and visited four farmers during fieldwork and shared 
our findings with them. Farmers emphasized the importance of timely planting 
and using adapted crop varieties along with changing management practices. 
Ten out of the 13 farmers reported losses ranging from 10% to 40% in years 
affected by El Niño or La Niña. However, in interviews, farmers dispute claims 
that their losses are a consequence of climate change, let alone deforestation. 
This perception highlights the challenges of foresting a dialogue on global climate 
change along with deforestation impacts on the regional climate with the Brazilian 
agribusiness. 
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4.1. Contextualization 

Stakeholder engagement refers to the active involvement and participation of 
those directly affected, or "people at stake," in various aspects of a research 
project. Different levels of stakeholder engagement can be identified, depending 
on the ultimate aims of the project's engagement activities (Carvalho-Ribeiro et 
al., 2010). The project team developed a stakeholder engagement protocol, 
implemented over a 10-month period, comprising five stages: 1) scoping, 2) semi-
structured questionnaires, 3) interviews, 4) case study selection, and 5) research 
dissemination. These steps enabled us to describe and characterize how farmers 
have changed their attitudes (opinions and beliefs) and behavior (e.g., farming 
practices) over the past 20 years in the context of extreme events and changes 
in temperature and rainfall; outline Amazon farmers' and ranchers' reactions to 
these extreme climate events; identify factors driving or hindering landowners' 
responses, including potential maladaptation; and understand farmers' 
awareness concerning the forest's role in climate regulation and the impact of 
deforestation on their agricultural activities and land-use decisions. 

We carried out a dialogue between our researchers at the Universidade Federal 
de Minas Gerais (UFMG) and farmers in the Brazilian Amazon, particularly in 
agricultural frontier areas where soy, maize, and cattle are prominent, and 
deforestation is occurring. Our goal was to inform farmers about our research and 
to explore their attitudes (opinions and beliefs) and behaviors (how they have 
been changing their farming activities) over the last 20 years. 
 

4.2. Objectives and research questions 

We aimed at engaging farmers and cattle ranchers to understand: (a) How 
agricultural producers of grains, such as soy and maize, and cattle ranchers in 
the Brazilian Amazon perceive changing climate conditions, particularly those 
leading to agricultural stress like the 2023 drought; (b) The primary strategies 
employed by agricultural producers exporting these commodities to respond to 
extreme climate events; (c) The factors contributing to unintended negative 
consequences, such as maladaptation, specifically through the expansion of 
agriculture at the expenses of forests in the Brazilian Amazon; (d) How Amazon 
farmers perceive the role of the Amazon Forest in climate regulation and whether 
this perception influences their land-use decisions.  

Our study answers the following questions:  

I. How do agricultural producers of grains such soy, maize and cattle 
ranchers perceive changing climate conditions?   

II. What are the primary strategies employed by agricultural producers that 
export these commodities to respond to extreme climate events?   

III. What factors contribute to unintended negative consequences, such as 
maladaptation, specifically through the expansion of agriculture at the 
expenses of forests in the Brazilian Amazon? 

IV. How do Amazon farmers perceive the role of the Amazon Forest in climate 
regulation and if this perception influences their land-use decisions?  
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4.3. Results 

4.3.1.  How do agricultural producers of grains such as soy, maize, 
and cattle ranchers perceive changing climate conditions? 

In the study, we contacted over 20 farming organizations and conducted 13 semi-
structured interviews (Table 4.1). We also visited four farmers during fieldwork 
and shared our findings with them.  

The ages of our interviewees ranged from 37 to 78 years old, with 12 men and 
one woman. Ten out of the 13 had a degree in either agriculture or economics, 
and 10 respondents were originally from other regions of Brazil, having migrated 
to the Amazon between the 1960s and 1980s. Farm sizes ranged from 1,500 to 
8,000 hectares, with major crops including soy, maize, sorghum, and sesame. 
Four out of the 13 farmers have invested in irrigation. Cattle ranching areas 
ranged from 600 to 3,500 hectares. Our results reveal that producers of soy, 
maize, and cattle have documented changes in rainfall and temperature over the 
last 20 years. They report variations across the years, attributing these patterns 
to climate events, such as El Niño and La Niña. 

When asked about their farming strategies during extreme climate events, 
farmers emphasized the importance of timely planting (beginning as soon as 
rainfall reaches 100 mm) and using adapted crop varieties along with changing 
management practices. Ten out of the 13 farmers reported losses ranging from 
10% to 40% in years affected by El Niño or La Niña. The questionnaire survey 
was conducted with 13 farmers in Paragominas region. 
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Table 4.1 Brief Summary of interviews 

From Pará, 52 years old. Graduated in Agronomy. Started in 1985 and underwent pasture reforms in 
2010. Reported 15% losses in El Niño years. 

From Pará, 41 years old. Family from Espírito Santo migrated to Pará in the 1970s. Cattle rancher with 
incomplete high school education. Runs a farm, which is a reference in genetic improvement and ILPF 
(Integrated Crop-Livestock-Forest systems). 

From Espírito Santo, arrived in Pará in 1967 and began agriculture and cattle production. Established an 
alcohol distillery and slaughterhouse. Reported yield drops and stocking rate decreases during El Niño. 
Implements irrigation, organic matter increase, and no-till farming. 

From southern Brazil, arrived in Pará in the 80s. Agronomist.  Believes production must be carried out in 
accordance with the Forest Code. Involved in creating Coopercarbon, seeking carbon credits certification 
for 8,500 hectares of forest. 

From São Paulo, 78 years old. Arrived in Pará in 1974. Holds considerable pristine forest areas. Faces 
difficulties maintaining them and expressed interest in selling the forested land. Graduated in Business 
Administration from FGV.  

From Mato Grosso do Sul, 49 years old. Initially involved in grain production, then leased a farm and 
shifted to cattle ranching. 

In Pará for 33 years. Produces fast-cycle agriculture: açaí, cassava, vegetables, etc., and distributes 
them. Has a degree in administration and works in the commerce sector. 

Born in Paragominas, 37 years old. Family from Espírito Santo, arrived in 1981. Started with timber and 
later focused on agribusiness management. Works in soybean production, largest agricultural hub in the 
state. Cattle ranching includes breeding, raising, and fattening. Agriculture includes soybeans, corn 
silage, and ILP. Reported impacts of El Niño on agriculture and cattle. 

From Paraná, has a technical degree in agriculture, and has always lived in the countryside. In Pará for 
20 years. Initially worked as a consultant, then started planting 6,500 hectares of crops with irrigation and 
cattle ranching. Prefers La Niña as it starts rain earlier. Reported changes in rainfall patterns and area 
use over the years. 

From São Paulo, has a technical degree in agriculture. Specializes in soy and cattle production enhanced 
by technology. Complains about the Forest Code. 



                                
 

51 
 

Table 4.1 Brief Summary of interviews 

From southern Brazil, moved to Mato Grosso. Holds a technical degree in agriculture. Mentioned 
technical development boosts agribusiness competitiveness but finds environmental agendas challenging 
and calls for more incentives. 

From São Paulo, has a technical degree in agriculture. Focuses on soy, maize, and cattle production 
enhanced by technology. Complains about the Forest Code and environmental legislation. 
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4.3.2. What are the primary strategies employed by agricultural 
producers that export these commodities to respond to extreme 
climate events? 

Contrary to initial attitudes of denial regarding changes in rainfall and 
temperature, farmers' behaviors indicate substantial changes in their production 
systems. Nine out of 13 farmers have been diversifying crops, and all of them 
have changed their cattle management systems. The four major strategies 
referred to by the interviewees are: I) Integrated farming and cattle systems, II) 
Use of genetic resources, III) Infrastructure, production technologies, and 
equipment, IV) No tillage. 

I) Integrated farming and cattle systems: Integrated farming and cattle 
systems, such as Integrated Crop-Livestock-Forestry (ICLF), are 
considered promising due to both greater efficiency in production along 
with simultaneous accumulation of carbon in the soil and plant 
biomass.  ICLF systems includes planting Eucalyptus trees in rows in 
an area under pasture. The soil was dystrophic Red-Yellow Latosol, 
clayey. The area, cultivated since 1998, was converted to the ICLF 
system in 2009. In the areas under ICLF, sampling was carried out 
beneath the trees' influence, in the pasture, and in the transition zone; 
considering points in the tree lines and points away from them as a 
reference of distance. In the reference areas (pasture and forest), 
samples were collected in a cross-section at points approximately 50 
m away from each other. Farmers stated that is common to see a 
significant accumulation only after 5 years under a certain type of 
management. They found a strong indication that the trees played an 
important role in the accumulation or preservation of the subsoil.  

II) Use of genetic resources: Identifying new genotypes adapted to 
climate change is a key strategy. Farmers state that they are 
encouraging innovation by strengthening public science and 
technology institutions and fostering collaboration with private entities; 
Farmers also support germplasm collection, introduction, and 
conservation by public institutions; One farmer stated that it has been 
identifying and domesticating species with potential to reduce climate 
vulnerability; Other strategy has been the preventive genetic 
improvement by developing large-scale phenotyping methods and 
establishing research networks for cultivar development using 
traditional and molecular techniques. Above all farmers highlighted the 
importance for facilitating technology transfers and establishing public-
private partnerships for seed multiplication and commercialization. 

III) Infrastructure, production technologies, and equipment: 
Enhancements in these areas promote resilience and adaptation to 
climate impacts. Investment in new technologies and partnerships for 
knowledge transfer is crucial. Farmers are all well-equipped in terms of 
machinery. In terms of infrastructure, they pointed out the need for 
further investment in “storage points” silos. Most of the farmers 
interviewed got funding from the federal government and banks (e.g., 
BNDS) to implement irrigation and other heavy and soft infrastructure. 
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IV) No tillage: All the farmers highlighted the importance of no tillage and 
direct plantations. In 2011, Embrapa began developing no-till 
techniques for renovating degraded pastures in the Amazon. Working 
alongside rural producers, they developed three no-till planting 
methods for pastures: aerial seeding, row seeding, and no-till planting 
of stolons. Dissemination of these practices began in 2014 through 
technical publications, lectures, field days, and courses. Adoption is 
increasing, according to reports from trained technicians and ranchers. 
Farmers acknowledge that productive and well-managed pastures not 
only ensure the profitability of livestock activities, but also protect the 
soil against erosion and compaction, maintain biological activity, and 
increase levels of organic matter and carbon.  Farmers understand 
pasture degradation is a persistent issue and will only be resolved 
when the rate of recovery and reform surpasses the degradation rate. 
Traditionally, degraded pastures are improved by planting forage in soil 
prepared with plows and harrows, but this increases soil vulnerability 
to erosion, especially in fragile or sloping terrains. In the Amazon's 
rainy climate, this risk is even more significant, impairing future pasture 
productivity. No-till farming offers a solution to this problem. Despite 
significant advancements in this technology since the 1990s for crops, 
its application in pasture improvement has not been extensively 
researched in Brazil.  

In no-till systems, excess straw can make sowing difficult and hinder 
the establishment of forages, which have smaller seeds and more 
fragile seedlings compared to agricultural crops. This issue was 
addressed by managing vegetation and adjusting desiccation 
techniques to reduce straw volume. Increasing the seeding rate 
compensates for lower seedling emergence efficiency. Aerial seeding 
is recommended when line seeders cannot be used, such as in sloping 
areas or rocky soil, and requires a higher seeding rate to ensure 
success. Directly planting seedlings offers time and cost savings in soil 
preparation operations and requires fewer seedlings while providing 
better traffic conditions on rainy days. This method reduces tractor 
operations by 36% compared to traditional methods, where seedlings 
are spread over ploughed ground and subsequently buried with a 
leveling harrow and roller-compactor. Direct seeding further decreases 
mechanized operations by 58% in no-till row seeding and 74% in no-
till aerial seeding (EMBRAPA, 2014). 

4.3.3. What factors contribute to unintended negative consequences, 
such as maladaptation, specifically through the expansion of 
agriculture at the expense of forests in the Brazilian Amazon? 

All the farmers interviewed have been expanding their production areas over the 
last 20 years either by buying new land or renting neighboring farms. Five farmers 
even doubled their initial cropland areas. With the argument of increasing 
production per ha, farmers have been investing in irrigation pivots (3 out 10 
farmers got public funding). Maladaptation literature highlights three broad 
categories of maladaptation: infrastructural (irrigation pivots), institutional 
(funding), and behavioral.  Adapting to climate change involves changes in 
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attitudes and behavior, which is so important as physical or institutional changes. 
Farmers highlighted the role of sustainable intensification. 
 

4.3.4. How do Amazon farmers perceive the role of the Amazon Forest 
in climate regulation and if this perception influences their land-
use decisions? 

Farmers perceive that forest contribute to water flow regulation, carbon uptake, 
biodiversity conservation and other essential ecosystem services. Some farmers 
use the forest soil debris for inoculating in their irrigated soy plantations, reporting 
higher moisture levels and higher productivity. Above all, most of the farmers 
were very critical concerning the lack of instruments and programs for receiving 
payment for ecosystem services from the native forest they conserve in their 
lands, as mandated by the Forest code. 
 

4.3.5. Final remarks 

Farmers emphasized the importance of timely planting and using adapted crop 
varieties along with changing management practices. Ten out of the 13 farmers 
reported losses ranging from 10% to 40% in years affected by El Niño or La Niña. 
However, in interviews, farmers dispute claims that their losses are a 
consequence of climate change, let alone deforestation. This perception 
highlights the challenges of foresting a dialogue on global climate change along 
with deforestation impacts on the regional climate with the Brazilian agribusiness. 
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5. Methodology 

5.1. Deforestation-induced local and regional climate 
changes and their economic impacts on agricultural 
production  

5.1.1. Methodological summary 

5.1.1.1. Data 

Daily rainfall amount estimates (𝑅𝑖,𝑗,𝑡 in mm.day-1) and daily maximum air 

temperatures (𝑇𝑚𝑎𝑥𝑖,𝑗,𝑡
 in °C), were obtained from the Brazilian Daily Weather 

Gridded Database (BR-DWGD) at the original resolution of ≈1×1 km, which have 
a high correlation (r² ≈ 0.8-0.9) with in-situ data. The BR-DWGD data replicate 
well the climate patterns in the Cerrado compared with those of the climate 
databases AgCFSR/AgMERRA (Ruane, et al. 2015) and NASA/POWER (Bender 
& Sentelhas, 2018). The BR-DWGD data were aggregated into time-series maps 
of 28×28 km grid-cell. 

Based on the available data from the Municipal Agricultural Production Survey by 
the Brazilian Institute of Geography and Statistics (IBGE, 2022), we obtained the 
average yield of soy-maize double cropping system (ton/ha) at the municipal level 
between 2006 and 2019. The tabular data were also converted into time-series 
maps of 28×28 km grid-cells by using the Inverse Distance Weighting 
interpolation. 

We calculated the extent of native vegetation loss between 1999 and 2019 using 
the land-use and land-cover maps from the MapBiomas project, collection 7 
(mapbiomas.org). To make the land-use and land-cover change data coincide 
with the climate data, we transformed the maps into time-series maps of the 
accumulated percentage of forest loss per 28×28 km grid-cell. 

Economic profitability (net revenue) is calculated by summing all the values of the 
resources (inputs and services) utilized in the production process of soybeans 
and maize. This involved dividing the data pertaining to production value by the 
total output. The tabular data was then spatially disaggregated into 28 x 28 km 
pixels, employing ordinary kriging as the interpolation method (Grego; de Oliveira 
& Vieira, 2014). To determine profitability, we divided the economic gains from 
that activity for the respective year by the production cost. The resulting figure 
can be expressed the profitability of soybean and maize production for the 
designated year, offering valuable insight into the economic viability of these 
crops. 

5.1.1.2.  Areas of soy-maize double cropping system 

We performed the spatial allocation of soy-maize double cropping using the 
Otimizagro model (Leite-Filho, et al. 2021, Rochedo et al, 2018). Otimizagro is a 
spatially explicit model that simulates land-use and land-use changes, including 
agriculture, forestry, native vegetation loss, and regeneration, under various 
scenarios of agricultural land demand and Brazilian environmental policies. The 
model spatially allocates nine annual crops (including single and double crops), 
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five perennial crops, and forest plantation using a spatial resolution of 6.25 ha. 
Otimizagro spatially allocates annual municipal estimates for soy-maize double 
cropping areas from the Brazilian Institute of Geography and Statistics (IBGE, 
2022) over maps of annual soy areas from MapBiomas project, collection 7, using 
for the favorability map, agricultural suitability for double cropping from Rochedo 
et al, 2018. 

5.1.1.3.  The onset of the agricultural rainy season 

Based on 𝑅𝑖,𝑗,𝑡 estimates from the BR-DWGD database, we identified the onset 

of the agricultural rainy season (𝑂𝑖,𝑗,𝑡 ) for each grid-cell. We used the anomalous 

accumulation method (Liebmann, et al. 2007) (Equation 1). This method has 
been successfully applied for this purpose in the state of Mato Grosso (Arvor, et 
al, 2014) and in the Southern Brazilian Amazon (Leite-Filho, et al, 2019). We 
defined September as the start of the hydrological year since the rainy season in 
the Cerrado occurs between October and March (Marengo, 1995). The AA 
method is directly applicable to agriculture, since the water demand of a soybean 
or maize plant is used as the reference value (Rref; mm.day−1), so that:  

𝐴𝐴(𝑑𝑎𝑦) = ∑ (𝑅𝑖,𝑗,𝑡 − 𝑅𝑟𝑒𝑓)
𝑑𝑎𝑦
𝑛=1   (Equation 1) 

where (𝑅𝑖,𝑗,𝑡 in mm.day-1). We fixed the Rref as 2.5 mm day−1, which corresponds 

to the needs of a soybean seedling (Abrahão & Costa, 2018). Onset of the 
agricultural rainy season for each grid-cell (𝑂𝑖,𝑗,𝑡), where i, j and t refer to space 

and time dimensions, is defined as the day from which AA remains positive during 
the longest period recorded (Liebmann, et al. 2007)  

5.1.1.4.  Definition of the first and second crop seasons 

The soy-maize double cropping system involves planting soybeans at the onset 
of the agricultural rainy season and maize after the soybean has been harvested. 
The second crop season faces yield challenges due to reduced rainfall amount 
and photoperiod, with late planting usually undergoing water stress. As our study 
analyzes each crop season independently, we utilized the 𝑂𝑖,𝑗,𝑡 values to estimate 

the crop seasons. We grouped 𝑅𝑖,𝑗,𝑡 data (mm.day-1) and the daily maximum air 

temperature (°C) from the BR-DWGD database from the day of the onset of the 
agricultural rainy season (day 1) up to the 140th day. We assume this time interval 
for the cultivation of the first crop. The second crop season takes place from day 
141 to day 260, which typically corresponds to January to April. 

5.1.1.5.  Climate anomalies due to forest loss for each crop season 

Climate patterns in the study region has a strong interannual and interdecadal 
variability, largely influenced by SST gradients of the North and South Atlantic 
(Marengo, et al. 2001) and the dry season evapotranspiration, in response to a 
seasonal increase of solar radiation (Myneni, et al. 2007), complicating the 
attribution of changes in the climate to native vegetation loss. Therefore, to 
identify the forest loss signal on the onset of the agricultural rainy season (𝑂′

𝑖,𝑗,𝑡), 

rainfall amount (𝑅′
𝑖,𝑗,𝑡) and maximum air temperature (𝑇𝑚𝑎𝑥

′
𝑖,𝑗,𝑡

), we had to 

remove the influence of geographic location, elevation and interannual variability; 
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the latter reflects the effects of large-scale climate mechanisms as well as 
anthropogenic climate change. 

To determine the anomalies and evaluate the efficacy of our detrending method, 
we adopted a multi-step procedure adapted from Leite-Filho et al. (2021). Our 
methodology consisted of three steps, as follows: First, we employed machine 
learning algorithms to model the spatial variability of climate. This involved the 
generation of maps that accurately capture the climate variations across the 
Cerrado. Subsequently, we rigorously assessed the accuracy of these models to 
ensure their reliability and representativeness of the spatial climate patterns. In 
the second step, we applied a detrending procedure to the climate data to remove 
the effects due to geographic location and elevation and in the third step we 
eliminated any long-term trend or pattern that could potentially influence the 
analysis. This procedure was crucial for preparing the data for subsequent 
analyses. Lastly, we validated the detrending procedure to confirm its 
effectiveness and verify that it did not introduce any biases into the analysis. Each 
step of our methodology is detailed as follows. 

Modeling the spatial variability of climate 

In the first step, we tested four machine learning algorithms for replicating the 
spatial patterns of the regional climate over the first and second cropping seasons 
and the onset of the agricultural rainy season as a function of latitude (𝜑), 
longitude (𝜆), and mean elevation (𝜁) of each grid-cell. We tested the Random 
Forest, Support Vector Machine, Generalized Linear Model, and Generalized 
Additive Algorithms. 

Verification of the spatial modeling of climate variability 

We conducted an evaluation of the four machine learning algorithms to determine 
their effectiveness in replicating the spatial patterns of the regional climate. The 
assessment was based on the absolute difference between the observed values 
and the values estimated from the algorithms. The Random Forest algorithm (RF) 
with 1000 trees yielded the best accuracy for capturing the climate patterns (Figs. 
S6 and S7).  

Detrending procedure 

Step 2 aimed at removing the climatological trends due to geographical location 
and elevation. As the climate spatial patterns replicated from the RF are static 
over time, the results from Equations S2-4 represent the signal due the 
interannual variability.  

𝑂𝑖,𝑗,𝑡 
∗ = (𝑂𝑖,𝑗,𝑡 −  𝑂̂𝑖,𝑗,𝑡)  (Equation 2) 

𝑅𝑖,𝑗,𝑡 
∗ = (𝑅𝑖,𝑗,𝑡 −  𝑅̂𝑖,𝑗,𝑡)  (Equation 3) 

𝑇𝑚𝑎𝑥𝑖,𝑗,𝑡 
∗ = (𝑇𝑚𝑎𝑥𝑖,𝑗,𝑡

−  𝑇̂𝑚𝑎𝑥𝑖,𝑗,𝑡
)  (Equation 4) 
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where i and j are the two-dimensions in space and t the time; 
𝑂𝑖,𝑗,𝑡 , 𝑅𝑖,𝑗,𝑡 , 𝑇𝑚𝑎𝑥𝑖,𝑗,𝑡

 𝑎𝑛𝑑 𝑇𝑚𝑖𝑛𝑖,𝑗,𝑡
 are the observed mean values of the onset of the 

agricultural rainy season,  rainfall amount and maximum air temperatures over 

the first and second crops; 𝑅̂𝑖,𝑗,𝑡 and 𝑇̂𝑚𝑎𝑥𝑖,𝑗,𝑡
 are the estimated values for rainfall 

amount and maximum air temperatures in the first and second crops and 𝑂̂𝑖,𝑗,𝑡 are 

the estimated values of the onset of the agricultural rainy season. 

In step 3, for each grid-cell, we then subtracted from the latter results the biome’s 
means for the same climate variables to eliminate the influence of large-scale 
factors, such as ENSO and anthropogenic GHG climate change. The resulting 
residue was considered an "anomaly," unexplained by geographic location, 
elevation, or large-scale time-varying factors. (Equations 5-7).  

𝑂𝑖,𝑗,𝑡 
′ = (𝑂∗

𝑖,𝑗,𝑡 −  𝑂̅𝑡)  (Equation 5) 

𝑅𝑖,𝑗,𝑡 
′ = (𝑅∗

𝑖,𝑗,𝑡 −  𝑅̅𝑡)  (Equation 6) 

𝑇𝑚𝑎𝑥𝑖,𝑗,𝑡 
′ = (𝑇𝑚𝑎𝑥

∗
𝑖,𝑗,𝑡

−  𝑇𝑚𝑎𝑥
̅̅ ̅̅ ̅̅

𝑡
)  (Equation 7) 

where 𝑇𝑚𝑎𝑥
∗

𝑖,𝑗,𝑡
 , 𝑅∗

𝑖,𝑗,𝑡 , 𝑂
∗

𝑖,𝑗,𝑡 are the differences between the values found and 

the simulated values from RF for the maximum air temperatures, rainfall amount 
(in the first and second crops) and the onset of the agricultural rainy season, 

respectively; 𝑅̅𝑡 𝑇𝑚𝑎𝑥
̅̅ ̅̅ ̅̅

𝑡
 are the mean maximum air temperatures and rainfall 

amount for the first and second crops and 𝑂̅𝑡 is the onset of the agricultural rainy 

season calculated for the whole study region; and 𝑂𝑖,𝑗,𝑡 
′ , 𝑅𝑖,𝑗,𝑡 

′ and  𝑇𝑚𝑎𝑥𝑖,𝑗,𝑡 
′  are 

the climate anomalies that are not explained by the geographic location, elevation 
and the interannual variability. These anomalies are attributed to the climate 
signal resulting from forest loss. 

5.1.1.6.  Verification of the detrending procedure 

To verify the effectiveness of the detrending procedure in isolating the climate 
signal from forest loss, we conducted several assessments. First, we calculated 
the annual means of each climate variable for the entire study region after 
applying the detrending procedure. As a result, the detrended annual means 
converged to zero, indicating that the procedure successfully removed long-term 
trends associated with geography, interannual variability and anthropogenic 
GHG climate change.  

In addition, we examined the spatial variability of the mean climate anomalies to 
check whether they exhibit any spatial gradients. This analysis was performed 
using the Cramer's V (Cramér, 1946) and the Spearman Rank Order Correlation 
coefficients (Spearman, 1904). The results indicate that after the detrending 
procedure, the climate anomalies exhibited spatial variability that was solely 
correlated with accumulated percentage of forest loss per grid- cell. For the onset 
of the agricultural rainy season, both Cramer's V (0.59) and Spearman's ρ (0.58) 
exhibit strong associations with forest loss. In the first crop season, significant 
relationships are observed between forest loss and anomalies in rainfall amount 
(Cramer's V = 0.56, Spearman's ρ = 0.52) and maximum air temperature 
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(Cramer's V = 0.47, Spearman's ρ = 0.46). Similarly, in the second crop season, 
anomalies in rainfall amount (Cramer's V = 0.55, Spearman's ρ = 0.52) and 
maximum air temperature (Cramer's V = 0.56, Spearman's ρ = 0.54) also exhibit 
notable relations with forest loss percentages. 

5.1.1.7.  Soybean and maize residues 

The generalized additive model, introduced by Hastie and Tibshirani in 2017, is 
a flexible statistical modeling approach that extends the concept of linear 
regression to incorporate nonlinear relationships between predictors and the 
response variable. The aim is to analyze the relationship between agricultural 
productivity and time, represented in years. The dependent variable in our study 
is agricultural productivity, measured in tons per hectare (t/ha). The independent 
variable is time, represented by the year. When our model contains nonlinear 
effects, GAM provides a regularized and interpretable solution – while other 
methods generally lack at least one of these three features.  

The adopted model is expressed as follows:   

𝑌=𝛽0+𝑓(x)+𝜖 (Equation 8) 

Where, 𝑌 is agricultural productivity (dependent variable), X is time (year), the 
independent variable, 𝛽0 is the intercept of the model, 𝑓(𝑋) is the smooth function 
of time, capturing the nonlinear relationship between productivity and year and 𝜖 
represents the error term. 

• Estimation of Smooth Function: The smooth function 𝑓(𝑋) is estimated 
non-parametrically from the data using kernel smoothing. This function captures 
the non-linear trend in productivity over the years. 

• Model Fitting: Model fitting is performed using maximum likelihood 
estimation, aiming to find the model parameters that best fit the data. 

• Model Evaluation: The fitted model is evaluated through diagnostic plots, 
cross-validation, and model fit measures using AIC. 

• Interpretation of Results: Results are interpreted based on the statistical 
significance of the time variable (year) and the shape of the estimated smooth 
function, describing how agricultural productivity varies over the years. 

5.1.1.8. Evidence for native vegetation loss intensifying regional 
climate change 

To assess the probability of crossing a specific climate threshold, we employed 
cumulative probability distribution functions (CPDF) (Anderson & Darling, 1954, 
Johnson & Balakrishnan, 1995). First, we categorized the percentage of native 
vegetation loss within each 28×28 km grid-cell into five intervals. The intervals 
encompass ≤ 20% of forest loss (interval 1) to ≥ 80% of forest loss (interval 5). 
To derive continuous CDFs for each climate variable (maximum air temperatures, 
rainfall amounts, and the onset of the agricultural rainy season), we performed a 
Monte Carlo simulation (Metropolis, 1987) with 10,000 iterations. 
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5.1.1.9. Critical climate thresholds leading to potential crop shortfalls  

a) The onset of the agricultural rainy season: Soy-maize double cropping 
in the Cerrado is predominantly rainfed and the rainy season typically spans 6 to 
7 months (Abrahão & Costa, 2018). Soybeans are usually planted at the onset of 
the agricultural rainy season, followed by maize cultivation in the same area after 
the soybean harvest. Maize is cultivated during a period when there is a reduction 
in rainfall, mean air temperatures, and shorter photoperiod in most crop-
producing regions (Borém, et al., 2015). Consequently, the later the second crop 
is planted, the lower its yield tends to be, primarily due to water stress towards 
the end of the growing season (Garcia, et al., 2018). It is worth noting that 
delaying the soybean planting operation more than 10 days may impair double 
cropping yields, especially considering the average cycle length of current 
cultivars such as S100 and M120 (Brumatti, et al. 2020). 

b) Rainfall amount: For soybean, on average, a minimum of 450 mm of 
water is required during its development cycle, with the reproductive stage being 
particularly sensitive to water deficits, with a daily evapotranspiration rate that can 
reach up to 8 mm/day (Berlato, Matzenauer & Bergamaschi, 2001; Pas-Campo, 
2005). For maize, medium-cycle plants must consume at least 400 mm of water 
throughout the development cycle.  

c) Air temperature: For soybean cultivation, the ideal temperature for 
development is around 30°C; germination and plant emergence are 
compromised when the soil temperature falls below 20°C (Setiyono, 2007). 
Temperatures exceeding 40°C can have adverse effects on soybean growth, 
including damage to flowering and reduced pod retention (Avila, et al., 2013). In 
the case of maize, the optimal temperature range for growth, from emergence to 
flowering, is between 24°C and 30°C. Temperatures above 30°C can negatively 
impact maize grain yield (Andrade, et al., 2006). 

5.1.1.10. Spatial determinants of fluctuations of soybean and maize 
yields 

Five main spatial determinants can explain the fluctuations in soybean and maize 
yields: the investment made by farmers in their crops, which depends on their 
previous year's economic yield and financial availability; genotype and cultivar, 
as discussed by Kurosaki & Yumoto (2003) and Hao et al. (2012); the seeding 
date, according to MacMillan & Guiden (2020); air temperature, referenced by 
Kurosaki & Yumoto (2003); and rainfall amount. These climatic conditions, 
specifically genotype and cultivar, air temperature, and rainfall amount, are 
influenced by global climate change linked to greenhouse gas emissions, 
interannual climate variability—which in Brazil often results in significant crop 
losses due to the adverse climatic effects of El Niño and La Niña phenomena—
and regional climate changes caused by land use and cover. To analyze the 
influence of these factors on fluctuations in soybean and maize yields in the 
Amazon and Cerrado, we used yield fluctuations in each grid cell as the 
dependent variable in a Spatial Autoregressive Model (SAR) applied to panel 
data (Drukker, et al., 2013). The explanatory variables were divided into four 
groups: normal climatology, which includes average rainfall amount, the onset of 
the agricultural rainy season, and maximum/minimum temperatures in each pixel 
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from 2006 to 2019 using the TRMM and BR-DWGD databases; interannual 
climate variability, considering the same climatic metrics during years when the 
Equatorial Pacific Ocean was warmer (El Niño) or colder (La Niña); impacts of 
native vegetation loss on climate, analyzing anomalies in the onset of the rainy 
season, rainfall, and temperatures due to native vegetation loss, calculated using 
a three-step procedure according to Leite-Filho et al. (2021 and 2024); and 
previous crop profitability, which involves converting the production cost from the 
previous crop into profitability. Crop losses impact profitability and affect producer 
revenue, potentially reducing future investment and contributing to further 
production losses. The methodology for estimating previous crop profitability is 
detailed in Supplementary Section SX. The SAR model incorporates the effect of 
geographic neighborhoods to mitigate spatial dependence between 
observations, a common issue in geographic data. For this, we used a weighted 
8-cell neighborhood matrix (Tiefelsdorf, et al., 1999). We employed the Akaike 
Information Criterion (AIC) to assess the quality of each model relative to others, 
providing a method for selecting the most appropriate model. 

5.2. Assessing Amazon reforestation potential for climate 
regulation 

5.2.1. Methodological summary 

5.2.1.1. Data 

Climate: We utilized daily rainfall volume estimates (Ri,j,t in mm.day-1) and daily 

maximum temperatures (Tmaxi,j,t
 in °C), from the Brazilian Daily Weather Gridded 

Database (BR-DWGD) at an original resolution of ≈1×1 km, which has a high 
correlation (r² ≈ 0.8-0.9) with in-situ data. The BR-DWGD data were aggregated 
into time-series maps at 28×28 km grid-cell resolution. The methods for 
calculating climate residues due to deforestation follows the previous section’s 
methodology 

5.2.1.2. Property-level modeling for targeted regeneration 

To support state environmental agencies in implementing the Forest Code and 
assist landowners in regularizing their Legal Reserve (RL) deficit, we developed 
a spatially explicit model to identify areas suitable for native vegetation 
restoration. This mapping, conducted at the level of rural properties, considers 
various physical variables to delineate areas most favorable for accommodating 
the legal reserve deficit. At the discretion of the environmental body, the model 
can be integrated with CAR 2.0, a system that automatically analyzes rural 
properties registered in the Environmental Rural Registry (CAR) and 
systematically verifies their compliance to the legislation. The model runs on the 
freeware software Dinamica EGO (dinamicaego.com), a sophisticated 
environmental modeling platform that enables integration with databases such as 
PostgreSQL/PostGIS. This freeware with a user-friendly graphical interface 
utilizes intrusive parallel processing; its execution system uses a variable number 
of execution threads, called workers, driven by task-stealing algorithms to provide 
load balancing and flexibility for executing simultaneous tasks. In theory, all 
model components can run in parallel, including operators, loops, and 
independent map tiles. This architecture drastically reduces the execution time of 
complex models that can run locally or in the cloud. 
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The model was executed only for rural properties with Legal Reserves (LR) deficit 
previously identified by CAR 2.0 and SeloVerde-PA technologies 
(https://www.semas.pa.gov.br/seloverde), which also provide estimates of the 
Forest Code conformity of all rural properties registered in CAR in the state of 
Pará. The computational infrastructure also daily integrates public data from state 
and federal agencies to combat illegal deforestation, promote environmental and 
land regularization, and transparently provide traceability of agricultural 
production. 

The LR deficit allocation model has several inputs, including data per rural 
property: unique identification code, perimeter geometry, and LR deficit area. 
Statewide coverage data includes land use, permanent conservation areas, and 
RL deficit allocation probability. The unique identification codes (CAR) and the 
geometries of rural properties were provided by the Secretariat of State for 
Environment and Sustainability of the Government of Pará (SEMAS/PA) via a 
shared database. The LR deficit areas were provided by the SeloVerde-PA 
platform database. The permanent preservation areas (APP) for conservation 
were generated using the Forest Code balance model hosted in the SeloVerde-
PA and CAR 2.0 platforms. The land use map is the result of combining high-
resolution mapping of the state of Pará (see https://csr.ufmg.br/mappia/), the 
hydrographic base of SEMAS/PA, deforestation observed after 2008 by the 
PRODES project of the National Institute for Space Research (INPE), and the 
soybean area from the MapBiomas project - collection 8.0. 

The land use classification was performed using a set of images from the Sentinel 
and Planet satellites, including texture-derived images. A machine learning 
algorithm with successive rounds of training, totaling more than 1 million sampled 
pixels, was used for supervised classification. The classified map was smoothed 
by removing isolated patches with classifications divergent from their 
neighborhood. The probability map for LR deficit allocation is created from the 
intersection of five physical landscape variables encompassing the entire state's 
extent (distance to roads, distance to water sources, distance to large fragments 
of native vegetation, altitude, and slope) to identify areas most favorable for 
restoring vegetation to meet or complete the minimum LR required by the Forest 
Code. Each variable was normalized on a common scale (0 to 255). The 
intersection of the normalized variables was modeled a Multi-Criteria Analysis 
(MCA) method, also known as Hierarchical Weighted Analysis. The resulting 
product is then normalized again. 

From the structured input database, the LR deficit allocation model is executed 
for the unique identification codes of each rural property in the database table. 
The assumptions for delineating areas most suitable areas for LR restoration 
consider allocation over the "post-2008 deforestation" class; continuity and 
contiguity of patches; proximity to property border; proximity to fragments of 
native vegetation; and avoiding allocation over the soybean cultivation class 
(allowed only if no other anthropogenic land-use area is available), as well as 
avoiding allocation in APPs. Dinamica EGO communicates with PostGIS through 
Python-developed submodels, such as "ExecutePostgisQuery," which executes 
queries and obtains tabular data, and "GetShapefileFromPostgis," which exports 
spatial data in vector format (shapefile). The LR allocation is performed for each 
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rural property individually after removing overlaps. This analysis is 
computationally demanding; however, after all optimizations, it was possible to 
reduce the processing time to just 30 seconds per rural property. Considering a 
total of about 73,000 properties with LR deficits in the state of Pará, the complete 
analysis could be executed in approximately 24 hours, thanks to the software's 
capability to perform parallel analyses. This feature allows the simultaneous 
analysis of multiple properties, limited only by the available memory and number 
processors in the system. The model executes several steps for the unique key 
codes of each rural property, including geometry acquisition, rasterization, LR 
deficit area allocation, polygonization, and result unification.  

5.2.1.3.  Quantifying climate benefits of regeneration across 
geographic scales 

Percentage of Native vegetation: Regression analysis is applied to correlate 
climate anomalies with accumulated native vegetation in each grid cell. We 
classified the native vegetation fraction into 19 classes: Class 1 has <5% of its 
area deforested; Class 2 has between 5 and 10% deforested; and so on, until 
Class 19, with between 90 and 95% deforested. Climate anomalies were 
normally distributed (Shapiro–Wilk test, p < 10−5), allowing us to apply a linear 
or second-degree polynomial regression between climate anomalies and the 
predictive variable of native vegetation loss, specifically tailored for this analysis. 
The statistical significance of all regression coefficients was tested by dividing 
each estimated coefficient by the standard deviation of the estimate. We also 
utilized the coefficients of sample correlation between pairs of explanatory 
variables to identify any collinear relationships between variables included in the 
empirical models. The best-fit regressions (linear or second-degree polynomial 
regression) modeled the climate anomalies as a function of percentage native 
vegetation. All regressions achieved high statistical significance (p < 10−5). 
 
Quantify changes in agricultural climate variables due to native vegetation 
changes: We employed the previously mentioned empirical regression models 
to quantify changes in agricultural climate variables due to changes in native 
vegetation on a pixel-by-pixel basis. Specifically, we estimated alterations in the 
onset of the agricultural rainy season, as well as anomalies in maximum and 
minimum temperature and rainfall attributed to changes in native vegetation. 
Incorporating insights from our regeneration simulations, we estimate potential 
benefits of these climate shifts on agricultural practices. Particularly, the earlier 
onset of the rainy season predicted currently under double cropping systems in 
the Amazon. In areas where increased rainfall volumes are projected due to 
regeneration, the additional water availability is expected to enhance crop 
productivity, reduce dependency on irrigation, and improve soil moisture 
conditions. 
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5.3. Deforestation-induced local and regional climate 
changes and associated impacts on pasture quality  

5.3.1. Methodological summary 

5.3.1.1. Data 

Daily rainfall amount estimates (𝑅𝑖,𝑗,𝑡 in mm.day-1) and daily maximum air 

temperatures (𝑇𝑚𝑎𝑥𝑖,𝑗,𝑡
 in °C), were obtained from the Brazilian Daily Weather 

Gridded Database (BR-DWGD) at the original resolution of ≈1×1 km, which have 
a high correlation (r² ≈ 0.8-0.9) with in-situ data. The BR-DWGD data replicate 
well the climate patterns in the Cerrado compared with those of the climate 
databases AgCFSR/AgMERRA [6] and NASA/POWER [7]. The BR-DWGD data 
were aggregated into time-series maps of 28×28 km grid-cell. The methods for 
calculating climate residues due to deforestation follows the methodology of 
section 5.1. 

The Pasture Vigor Condition module, covering the period from 2000 to 2023, was 
developed based on the MapBiomas Collection 9 pasture map. This mapping 
evaluates pasture vigor conditions using the vegetative vigor trend as an indicator 
to classify pastures into three categories: (a) low vigor, (b) medium vigor, and (c) 
high vigor. The vigor condition of a pasture area is generally related to 
management practices, the type of forage plant used, and the degradation stage 
of the area, with the latter being more closely associated with biological 
degradation (exposed soil), largely influenced by the climate. We calculated the 
extent of native vegetation loss between 1999 and 2019 using the land-use and 
land-cover maps from the MapBiomas project, collection 7 (mapbiomas.org). To 
make the land-use and land-cover change data coincide with the climate data, 
we transformed the maps into time-series maps of the accumulated percentage 
of forest loss per 28×28 km grid-cell. 

5.3.1.2. Spatial determinants of pasture quality 

Five main spatial determinants can explain pasture quality:  investments; 
genotype and grass species, as discussed by Kurosaki & Yumoto (2003) and 
Hao et al. (2012) and MacMillan & Guiden (2020); air temperature, referenced by 
Kurosaki & Yumoto (2003); and rainfall amount. Aiir temperature, and rainfall 
amount, are influenced by global climate change linked to greenhouse gas 
emissions, interannual climate variability—El Niño and La Niña phenomena—
and regional climate changes caused by land use and cover. To analyze the 
influence of these factors on pasture quality in the Amazon, we used pasture 
quality as dependent variable in Weights of evidence model (Drukker, et al., 
2013).  

The explanatory variables were divided into four groups: normal climatology, 
which includes average rainfall amount, the onset of the agricultural rainy season, 
and maximum/minimum temperatures in each grid-cell using the BR-DWGD 
databases; interannual climate variability, considering the same climatic metrics 
during years when the Equatorial Pacific Ocean was warmer (El Niño) or colder 
(La Niña); impacts of native vegetation loss on climate, analyzing anomalies in 
the onset of the rainy season, rainfall, and temperatures due to native vegetation 
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loss, calculated using a three-step procedure according to Leite-Filho et al. (2021 
and 2024); and investments. 

5.4. Stakeholder engagement 

5.4.1. Methodology  

The protocol comprised five stages: 1) scoping, 2) developing a semi-structured 
questionnaire, 3) interviews, 4) fieldwork visits and case study selection, and 5) 
research dissemination (Figure 1). The stakeholder engagement protocol 
followed the Biodiversa Handbook (https://www.biodiversa.eu/wp-
content/uploads/2022/12/stakeholder-engagement-handbook.pdf). 

5.4.1.1.  Scoping 

The first step was defining the desired outcomes, scope, and context of the 
stakeholder engagement process. The engagement strategy was implemented 
by considering the reasons for engagement and the goals of the process. This 
scope was defined by the research team at UFMG and Rainforest Norway, in 
collaboration with other organizations and cross-sectoral stakeholders. We 
identified and selected agribusiness stakeholders from governmental and non-
governmental organizations focused on grain and cattle ranching, targeting large 
producers who export soy, maize, or cattle. 

To identify stakeholders, a project flyer was disseminated widely, detailing the 
research objectives and goals. An email with the flyer attached was sent to over 
50 governmental organizations involved in soy, maize, and cattle sectors (Annex 
2). For organizations that did not respond, telephone follow-ups were conducted. 
Meetings were arranged with various organizations to present the project and 
gather suggestions for farmer contacts in different Amazon regions. These 
scoping meetings were crucial for understanding how to engage farmers and 
facilitate dialogue effectively. The meetings highlighted the challenges of 
establishing dialogue on climate change and deforestation topics, as 
agribusiness farmers often dispute claims linking their activities to climate 
changes. Our objective was not to challenge their beliefs but to understand how 
their practices have evolved due to changes in rainfall and temperature patterns. 
To maintain open communication, we avoided terms like "climate change," 
instead focusing on "changes in rainfall" and "temperature." This approach 
aligned with farmers' willingness to engage in this project. 

The scoping phase, from January to March 2024, included meetings with 
governmental and non-governmental organizations in Pará and Mato Grosso 
states. We discussed the questionnaire structure and sought contacts for 
prominent farmers who export grains or cattle. These organizations helped test 
and refine the questionnaire, enhancing communication between researchers 
and farmers. Participation in the stakeholder identification process helped define 
and refine the issues considered and provided comprehensive information on 
stakeholders involved. The engagement's purpose was primarily normative, 
emphasizing the process’s benefits (e.g., increased learning, trust, and reduced 
conflict). Our stakeholder involvement followed the Biodiversa handbook's 

https://www.biodiversa.eu/wp-content/uploads/2022/12/stakeholder-engagement-handbook.pdf
https://www.biodiversa.eu/wp-content/uploads/2022/12/stakeholder-engagement-handbook.pdf
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"Inform" level, aiming to update interested parties with balanced information to 
help them understand the problem, identify alternatives, and find solutions. 

5.4.1.2.  Semi-Structured Questionnaire 

The questionnaire was structured into four sections associated with the project's 
major research questions. In the introduction, we explained that interviewees 
were selected for their prominence in the area. We emphasized the study’s 
significance in understanding changes in rainfall and temperature on agricultural 
productivity, assured confidentiality, and encouraged honest responses. The 
initial questions focused on farm characterization, including total farm size, 
annual crop area variation, and cattle management systems, aiming to 
understand changes in agriculture and no-till practices. We collected 
interviewees' personal stories to contextualize climatic and socio-economic 
timelines. 

We addressed recent climate variations (2020-2022, La Niña, and 2023, El Niño), 
inquiring about farmers' perceptions of agricultural impacts and quantification of 
losses. An infographic was used to facilitate discussions. We explored farmers' 
memories of climate patterns since the 1990s, considering significant shifts and 
extreme events, and prompted responses regarding documented changes in 
rainfall and temperature. Further questions addressed changes in farming 
practices, crop varieties, and potential financial losses. Farmers listed cultivated 
crops and grasses, highlighting changes over time in cropping systems and 
motivations for these changes. 

5.4.1.3. Project Research Questions 

 
Scope Questionnaire 

a) Perception of changing climate 
conditions and its impact on 
agriculture 

How was your farm in the 90s? How is it in 
2024? Changes in rainfall and temperature? 
Why change crop varieties and management 

systems? 

b) Strategies in response to extreme 
climate events 

List of crops and management systems 

c) Factors contributing to unintended 
consequences like maladaptation 

Expansion of crop area and irrigation projects 

d) Farmers' perception of the 
Amazon Forest's role in climate 
regulation 

Awareness of forest benefits: water, carbon 
uptake 

 
5.4.1.4. Stakeholder Interview 

Research interviews with farmers were unique, given their different experiences, 
behaviors, and motivations compared to academic researchers. We sought 
permission to record and transcribe interviews, clarify ethical protocols (Process 
number), and assured participants' confidentiality. Our approach emphasized 
open-ended, non-directive questions and thorough understanding of responses. 
We clarified that the project included a fieldwork trip and asked if farmers were 
willing to participate. Interviews were transcribed using COLAB. 
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5.4.1.5. Fieldwork in Selected Case Studies 

During the interviews conducted from April to June, six farmers expressed 
willingness to receive the research team on their farms during the fieldwork 
scheduled for August. Following the interviews, we re-contacted these farmers to 
confirm our visit plans and informed them that journalists would also accompany 
the research team. Four farmers agreed to host the team and journalists in 
Paragominas in August, 2024. Arrangements were made with these farmers to 
organize the fieldwork, with one farm visited per day.  
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